Publication Date
| In 2026 | 0 |
| Since 2025 | 3 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 4 |
| Since 2007 (last 20 years) | 6 |
Descriptor
| Correlation | 18 |
| Matrices | 18 |
| Sample Size | 18 |
| Factor Analysis | 9 |
| Monte Carlo Methods | 7 |
| Mathematical Models | 5 |
| Equations (Mathematics) | 4 |
| Estimation (Mathematics) | 4 |
| Sampling | 4 |
| Statistical Bias | 4 |
| Educational Research | 3 |
| More ▼ | |
Source
| Educational and Psychological… | 2 |
| Journal of Educational… | 2 |
| ProQuest LLC | 2 |
| Journal of Experimental… | 1 |
| Large-scale Assessments in… | 1 |
| Practical Assessment,… | 1 |
| Structural Equation Modeling:… | 1 |
Author
Publication Type
| Reports - Research | 11 |
| Journal Articles | 8 |
| Reports - Evaluative | 4 |
| Speeches/Meeting Papers | 4 |
| Dissertations/Theses -… | 2 |
| Reference Materials -… | 1 |
Education Level
Audience
| Researchers | 2 |
Location
Laws, Policies, & Programs
Assessments and Surveys
| National Assessment of… | 1 |
| SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Yan Xia; Xinchang Zhou – Educational and Psychological Measurement, 2025
Parallel analysis has been considered one of the most accurate methods for determining the number of factors in factor analysis. One major advantage of parallel analysis over traditional factor retention methods (e.g., Kaiser's rule) is that it addresses the sampling variability of eigenvalues obtained from the identity matrix, representing the…
Descriptors: Factor Analysis, Statistical Analysis, Evaluation Methods, Sampling
Julia-Kim Walther; Martin Hecht; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Small sample sizes pose a severe threat to convergence and accuracy of between-group level parameter estimates in multilevel structural equation modeling (SEM). However, in certain situations, such as pilot studies or when populations are inherently small, increasing samples sizes is not feasible. As a remedy, we propose a two-stage regularized…
Descriptors: Sample Size, Hierarchical Linear Modeling, Structural Equation Models, Matrices
Paul A. Jewsbury; Matthew S. Johnson – Large-scale Assessments in Education, 2025
The standard methodology for many large-scale assessments in education involves regressing latent variables on numerous contextual variables to estimate proficiency distributions. To reduce the number of contextual variables used in the regression and improve estimation, we propose and evaluate principal component analysis on the covariance matrix…
Descriptors: Factor Analysis, Matrices, Regression (Statistics), Educational Assessment
Marcus A. Fagan – ProQuest LLC, 2020
Previous research has individually assessed parallel analysis and minimum average partial for factor retention in exploratory factor analysis using ordinal variables. The current study is a comprehensive simulation study including the manipulation of eight conditions (type of correlation matrix, sample size, number of variables per factor, number…
Descriptors: Retention (Psychology), Factor Analysis, Correlation, Matrices
Beavers, Amy S.; Lounsbury, John W.; Richards, Jennifer K.; Huck, Schuyler W.; Skolits, Gary J.; Esquivel, Shelley L. – Practical Assessment, Research & Evaluation, 2013
The uses and methodology of factor analysis are widely debated and discussed, especially the issues of rotational use, methods of confirmatory factor analysis, and adequate sample size. The variety of perspectives and often conflicting opinions can lead to confusion among researchers about best practices for using factor analysis. The focus of the…
Descriptors: Factor Analysis, Educational Research, Best Practices, Sample Size
Victor Snipes Swaim – ProQuest LLC, 2009
Numerous procedures have been suggested for determining the number of factors to retain in factor analysis. However, previous studies have focused on comparing methods using normal data sets. This study had two phases. The first phase explored the Kaiser method, Scree test, Bartlett's chi-square test, Minimum Average Partial (1976&2000),…
Descriptors: Factor Analysis, Factor Structure, Maximum Likelihood Statistics, Evaluation Methods
Dziuban, Charles D.; And Others – 1976
The distributional characteristics of the Kaiser-Rice measure of sampling adequacy (MSA) were investigated with sample correlation matrices from multivariate normal populations where the level of correlation (LC) was systematically varied. Two additional variables were manipulated--sample size (SS) and number of variables (NV). Ten matrices were…
Descriptors: Analysis of Variance, Correlation, Factor Analysis, Matrices
Aleamoni, Lawrence M. – 1974
The relationship of sample size to number of variables in the use of factor analysis has been treated by many investigators. In attempting to explore what the minimum sample size should be, none of these investigators pointed out the constraints imposed on the dimensionality of the variables by using a sample size smaller than the number of…
Descriptors: Correlation, Factor Analysis, Factor Structure, Matrices
Thompson, Bruce – 1984
Several important issues related to canonical correlation have been recognized and resolved during the last several years. The purpose of this presentation is to offer an organized, comprehensive, and current annotated bibliography of the many recent developments and extensions of canonical methods. The bibliography does not emphasize references…
Descriptors: Annotated Bibliographies, Correlation, Data Analysis, Factor Analysis
Peer reviewedCohen, Jacob; Nee, John C. M. – Educational and Psychological Measurement, 1984
Two measures of association between sets of variables have been proposed for set correlation: the proportion of generalized variance, and the proportion of additionive variance. Because these measures are strongly positively biased, approximate expected values and estimators of these measures are derived and checked. (Author/BW)
Descriptors: Correlation, Estimation (Mathematics), Mathematical Formulas, Matrices
Peer reviewedReddon, John R.; And Others – Journal of Educational Statistics, 1985
Computer sampling from a multivariate normal spherical population was used to evaluate the type one error rates for a test of sphericity based on the distribution of the determinant of the sample correlation matrix. (Author/LMO)
Descriptors: Computer Simulation, Correlation, Error of Measurement, Matrices
PDF pending restorationKaiser, Javaid – 1994
A Monte Carlo study was conducted to compare the efficiency of Listwise deletion, Pairwise deletion, Allvalue, and Samemean methods in estimating the correlation matrix from data that had randomly occurring missing values. The four methods were compared in a 3x3x4 factorial design representing sample size, proportion of incomplete records in the…
Descriptors: Comparative Analysis, Correlation, Estimation (Mathematics), Matrices
Peer reviewedThompson, Bruce – Journal of Experimental Education, 1991
Monte Carlo methods were used to evaluate the degree to which canonical function and structure coefficients may be differentially sensitive to sampling error. For each of 64 research situations, 1,000 random samples were drawn. Both sets of coefficients were roughly equally influenced; some exceptions are noted. (SLD)
Descriptors: Behavioral Science Research, Computer Simulation, Correlation, Matrices
Peer reviewedBecker, Betsy Jane – Journal of Educational Statistics, 1992
Combining information to estimate standardized partial regression coefficients in a linear model is discussed. A combined estimate obtained from the pooled correlation matrix is proposed, and its large sample distribution is obtained. The method is generalized to handle a random effects model in which correlation parameters vary across studies.…
Descriptors: Correlation, Equations (Mathematics), Estimation (Mathematics), Hypothesis Testing
Vasu, Ellen S.; Elmore, Patricia B. – 1975
The effects of the violation of the assumption of normality coupled with the condition of multicollinearity upon the outcome of testing the hypothesis Beta equals zero in the two-predictor regression equation is investigated. A monte carlo approach was utilized in which three differenct distributions were sampled for two sample sizes over…
Descriptors: Correlation, Error of Measurement, Factor Structure, Hypothesis Testing
Previous Page | Next Page ยป
Pages: 1 | 2
Direct link
