NotesFAQContact Us
Collection
Advanced
Search Tips
Education Level
Secondary Education1
Audience
Location
California1
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tong-Rong Yang; Li-Jen Weng – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In Savalei's (2011) simulation that evaluated the performance of polychoric correlation estimates in small samples, two methods for treating zero-frequency cells, adding 0.5 (ADD) and doing nothing (NONE), were compared. Savalei tentatively suggested using ADD for binary data and NONE for data with three or more categories. Yet, Savalei's…
Descriptors: Correlation, Statistical Distributions, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
John Mart V. DelosReyes; Miguel A. Padilla – Journal of Experimental Education, 2024
Estimating confidence intervals (CIs) for the correlation has been a challenge because the correlation sampling distribution changes depending on the correlation magnitude. The Fisher z-transformation was one of the first attempts at estimating correlation CIs but has historically shown to not have acceptable coverage probability if data were…
Descriptors: Research Problems, Correlation, Intervals, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao, Leifeng; Hau, Kit-Tai – Educational and Psychological Measurement, 2023
We examined the performance of coefficient alpha and its potential competitors (ordinal alpha, omega total, Revelle's omega total [omega RT], omega hierarchical [omega h], greatest lower bound [GLB], and coefficient "H") with continuous and discrete data having different types of non-normality. Results showed the estimation bias was…
Descriptors: Statistical Bias, Statistical Analysis, Likert Scales, Statistical Distributions
Peer reviewed Peer reviewed
PDF on ERIC Download full text
von Oertzen, Timo; Schmiedek, Florian; Voelkle, Manuel C. – Journal of Intelligence, 2020
Properties of psychological variables at the mean or variance level can differ between persons and within persons across multiple time points. For example, cross-sectional findings between persons of different ages do not necessarily reflect the development of a single person over time. Recently, there has been an increased interest in the…
Descriptors: Cognitive Ability, Individual Differences, Statistical Analysis, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Green, Samuel; Xu, Yuning; Thompson, Marilyn S. – Educational and Psychological Measurement, 2018
Parallel analysis (PA) assesses the number of factors in exploratory factor analysis. Traditionally PA compares the eigenvalues for a sample correlation matrix with the eigenvalues for correlation matrices for 100 comparison datasets generated such that the variables are independent, but this approach uses the wrong reference distribution. The…
Descriptors: Factor Analysis, Accuracy, Statistical Distributions, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Trafimow, David – Educational and Psychological Measurement, 2018
Because error variance alternatively can be considered to be the sum of systematic variance associated with unknown variables and randomness, a tripartite assumption is proposed that total variance in the dependent variable can be partitioned into three variance components. These are variance in the dependent variable that is explained by the…
Descriptors: Statistical Analysis, Correlation, Experiments, Effect Size
Peer reviewed Peer reviewed
PDF on ERIC Download full text
de Winter, J. C .F. – Practical Assessment, Research & Evaluation, 2013
Researchers occasionally have to work with an extremely small sample size, defined herein as "N" less than or equal to 5. Some methodologists have cautioned against using the "t"-test when the sample size is extremely small, whereas others have suggested that using the "t"-test is feasible in such a case. The present…
Descriptors: Sample Size, Statistical Analysis, Hypothesis Testing, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Schweig, Jonathan – Journal of Educational and Behavioral Statistics, 2014
Measures of classroom environments have become central to policy efforts that assess school and teacher quality. This has sparked a wide interest in using multilevel factor analysis to test measurement hypotheses about classroom-level variables. One approach partitions the total covariance matrix and tests models separately on the…
Descriptors: Factor Analysis, Robustness (Statistics), Measurement, Classroom Environment
MacDonald, George T. – ProQuest LLC, 2014
A simulation study was conducted to explore the performance of the linear logistic test model (LLTM) when the relationships between items and cognitive components were misspecified. Factors manipulated included percent of misspecification (0%, 1%, 5%, 10%, and 15%), form of misspecification (under-specification, balanced misspecification, and…
Descriptors: Simulation, Item Response Theory, Models, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Chan, Wai – Educational and Psychological Measurement, 2009
A typical question in multiple regression analysis is to determine if a set of predictors gives the same degree of predictor power in two different populations. Olkin and Finn (1995) proposed two asymptotic-based methods for testing the equality of two population squared multiple correlations, [rho][superscript 2][subscript 1] and…
Descriptors: Multiple Regression Analysis, Intervals, Correlation, Computation
Rosenthal, James A. – Springer, 2011
Written by a social worker for social work students, this is a nuts and bolts guide to statistics that presents complex calculations and concepts in clear, easy-to-understand language. It includes numerous examples, data sets, and issues that students will encounter in social work practice. The first section introduces basic concepts and terms to…
Descriptors: Statistics, Data Interpretation, Social Work, Social Science Research
Peer reviewed Peer reviewed
May, Kim; Hittner, James B. – Journal of Experimental Education, 1997
A Monte Carlo evaluation of four test statistics for comparing dependent zero-order correlations was conducted with four sample sizes and three population distributions. Results indicate that choice of optimal test statistic depends on sample size and distribution, and predictor intercorrelation and effect size or magnitude of the…
Descriptors: Correlation, Effect Size, Monte Carlo Methods, Predictor Variables
Peer reviewed Peer reviewed
Headrick, Todd C.; Sawilosky, Shlomo S. – Psychometrika, 1999
Proposes a procedure for generating multivariate nonnormal distributions. The procedure, an extension of the Fleishman power method (A. Fleishman, 1978), generates the average value of intercorrelations much closer to population parameters than competing procedures for skewed and heavy tailed distributions and small sample sizes. Reports Monte…
Descriptors: Correlation, Equations (Mathematics), Monte Carlo Methods, Multivariate Analysis
Peer reviewed Peer reviewed
Bedrick, Edward J. – Psychometrika, 1990
Asymptotic distributions of H. Brogden's and F. Lord's modified sample biserial correlation coefficients (SBCCs) are derived. Asymptotic variances of these estimators are evaluated for bivariate normal populations and compared to the maximum likelihood estimator's asymptotic variance. These estimators are less variable than ordinary SBCCs when the…
Descriptors: Correlation, Equations (Mathematics), Estimation (Mathematics), Mathematical Models
Peer reviewed Peer reviewed
Cornwell, John M. – Educational and Psychological Measurement, 1993
A comparison is made of the power and actual alpha levels of three tests of homogeneity for independent product-moment correlation coefficients using Monte Carlo methods while selectively studying sample size and varying the number of correlation reliabilities. How robust these are in applied work is discussed. (SLD)
Descriptors: Comparative Analysis, Correlation, Error of Measurement, Monte Carlo Methods
Previous Page | Next Page ยป
Pages: 1  |  2