Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 9 |
Since 2016 (last 10 years) | 21 |
Since 2006 (last 20 years) | 44 |
Descriptor
Correlation | 52 |
Error of Measurement | 52 |
Simulation | 52 |
Monte Carlo Methods | 14 |
Computation | 13 |
Models | 11 |
Item Response Theory | 10 |
Structural Equation Models | 10 |
Comparative Analysis | 9 |
Sample Size | 9 |
Test Items | 9 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 39 |
Reports - Research | 30 |
Reports - Evaluative | 15 |
Speeches/Meeting Papers | 4 |
Dissertations/Theses -… | 3 |
Reports - Descriptive | 3 |
Information Analyses | 1 |
Numerical/Quantitative Data | 1 |
Education Level
Elementary Secondary Education | 1 |
Grade 4 | 1 |
High Schools | 1 |
Secondary Education | 1 |
Audience
Researchers | 4 |
Laws, Policies, & Programs
Assessments and Surveys
Cognitive Abilities Test | 1 |
Iowa Tests of Basic Skills | 1 |
Stanford Achievement Tests | 1 |
What Works Clearinghouse Rating
van Aert, Robbie C. M. – Research Synthesis Methods, 2023
The partial correlation coefficient (PCC) is used to quantify the linear relationship between two variables while taking into account/controlling for other variables. Researchers frequently synthesize PCCs in a meta-analysis, but two of the assumptions of the common equal-effect and random-effects meta-analysis model are by definition violated.…
Descriptors: Correlation, Meta Analysis, Sampling, Simulation
Sanghyun Hong; W. Robert Reed – Research Synthesis Methods, 2024
This study builds on the simulation framework of a recent paper by Stanley and Doucouliagos ("Research Synthesis Methods" 2023;14;515--519). S&D use simulations to make the argument that meta-analyses using partial correlation coefficients (PCCs) should employ a "suboptimal" estimator of the PCC standard error when…
Descriptors: Meta Analysis, Correlation, Weighted Scores, Simulation
Hoang V. Nguyen; Niels G. Waller – Educational and Psychological Measurement, 2024
We conducted an extensive Monte Carlo study of factor-rotation local solutions (LS) in multidimensional, two-parameter logistic (M2PL) item response models. In this study, we simulated more than 19,200 data sets that were drawn from 96 model conditions and performed more than 7.6 million rotations to examine the influence of (a) slope parameter…
Descriptors: Monte Carlo Methods, Item Response Theory, Correlation, Error of Measurement
Huang, Qi; Bolt, Daniel M. – Educational and Psychological Measurement, 2023
Previous studies have demonstrated evidence of latent skill continuity even in tests intentionally designed for measurement of binary skills. In addition, the assumption of binary skills when continuity is present has been shown to potentially create a lack of invariance in item and latent ability parameters that may undermine applications. In…
Descriptors: Item Response Theory, Test Items, Skill Development, Robustness (Statistics)
Miyazaki, Yasuo; Kamata, Akihito; Uekawa, Kazuaki; Sun, Yizhi – Educational and Psychological Measurement, 2022
This paper investigated consequences of measurement error in the pretest on the estimate of the treatment effect in a pretest-posttest design with the analysis of covariance (ANCOVA) model, focusing on both the direction and magnitude of its bias. Some prior studies have examined the magnitude of the bias due to measurement error and suggested…
Descriptors: Error of Measurement, Pretesting, Pretests Posttests, Statistical Bias
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Grantee Submission, 2021
Multilevel structural equation (MSEM) models allow researchers to model latent factor structures at multiple levels simultaneously by decomposing within- and between-group variation. Yet the extent to which the sampling ratio (i.e., proportion of cases sampled from each group) influences the results of MSEM models remains unknown. This paper…
Descriptors: Sampling, Structural Equation Models, Factor Structure, Monte Carlo Methods
Kristin Porter; Luke Miratrix; Kristen Hunter – Society for Research on Educational Effectiveness, 2021
Background: Researchers are often interested in testing the effectiveness of an intervention on multiple outcomes, for multiple subgroups, at multiple points in time, or across multiple treatment groups. The resulting multiplicity of statistical hypothesis tests can lead to spurious findings of effects. Multiple testing procedures (MTPs)…
Descriptors: Statistical Analysis, Hypothesis Testing, Computer Software, Randomized Controlled Trials
Baek, Eunkyeng; Luo, Wen; Henri, Maria – Journal of Experimental Education, 2022
It is common to include multiple dependent variables (DVs) in single-case experimental design (SCED) meta-analyses. However, statistical issues associated with multiple DVs in the multilevel modeling approach (i.e., possible dependency of error, heterogeneous treatment effects, and heterogeneous error structures) have not been fully investigated.…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Comparative Analysis, Statistical Inference
Hosseinzadeh, Mostafa – ProQuest LLC, 2021
In real-world situations, multidimensional data may appear on large-scale tests or attitudinal surveys. A simple structure, multidimensional model may be used to evaluate the items, ignoring the cross-loading of some items on the secondary dimension. The purpose of this study was to investigate the influence of structure complexity magnitude of…
Descriptors: Item Response Theory, Models, Simulation, Evaluation Methods
Li, Xinru; Dusseldorp, Elise; Meulman, Jacqueline J. – Research Synthesis Methods, 2019
In meta-analytic studies, there are often multiple moderators available (eg, study characteristics). In such cases, traditional meta-analysis methods often lack sufficient power to investigate interaction effects between moderators, especially high-order interactions. To overcome this problem, meta-CART was proposed: an approach that applies…
Descriptors: Correlation, Meta Analysis, Identification, Testing
van Zundert, Camiel H. J.; Miocevic, Milica – Research Synthesis Methods, 2020
Synthesizing findings about the indirect (mediated) effect plays an important role in determining the mechanism through which variables affect one another. This simulation study compared six methods for synthesizing indirect effects: correlation-based MASEM, parameter-based MASEM, marginal likelihood synthesis, an adjustment to marginal likelihood…
Descriptors: Correlation, Comparative Analysis, Meta Analysis, Bayesian Statistics
Bramley, Tom – Research Matters, 2020
The aim of this study was to compare, by simulation, the accuracy of mapping a cut-score from one test to another by expert judgement (using the Angoff method) versus the accuracy with a small-sample equating method (chained linear equating). As expected, the standard-setting method resulted in more accurate equating when we assumed a higher level…
Descriptors: Cutting Scores, Standard Setting (Scoring), Equated Scores, Accuracy
Aksu Dunya, Beyza – International Journal of Testing, 2018
This study was conducted to analyze potential item parameter drift (IPD) impact on person ability estimates and classification accuracy when drift affects an examinee subgroup. Using a series of simulations, three factors were manipulated: (a) percentage of IPD items in the CAT exam, (b) percentage of examinees affected by IPD, and (c) item pool…
Descriptors: Adaptive Testing, Classification, Accuracy, Computer Assisted Testing
Perry, Thomas – Research Papers in Education, 2019
A compositional effect is when pupil attainment is associated with the characteristics of their peers, over and above their own individual characteristics. Pupils at academically selective schools, for example, tend to out-perform similar-ability pupils who are educated with mixed-ability peers. Previous methodological studies however have shown…
Descriptors: Value Added Models, Correlation, Individual Characteristics, Peer Influence
Li, Ming; Harring, Jeffrey R. – Educational and Psychological Measurement, 2017
Researchers continue to be interested in efficient, accurate methods of estimating coefficients of covariates in mixture modeling. Including covariates related to the latent class analysis not only may improve the ability of the mixture model to clearly differentiate between subjects but also makes interpretation of latent group membership more…
Descriptors: Simulation, Comparative Analysis, Monte Carlo Methods, Guidelines