Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 9 |
Descriptor
Correlation | 10 |
Least Squares Statistics | 10 |
Simulation | 10 |
Models | 5 |
Computation | 3 |
Factor Analysis | 3 |
Goodness of Fit | 3 |
Error of Measurement | 2 |
Evaluation Methods | 2 |
Item Response Theory | 2 |
Mathematical Formulas | 2 |
More ▼ |
Source
Author
Ana Hernández-Dorado | 1 |
Drasgow, Fritz | 1 |
Griffin, Simon | 1 |
Joreskog, Karl G. | 1 |
Kinmonth, Ann-Louise | 1 |
Kuhn, Jorg-Tobias | 1 |
Lee, Hsun-Ming | 1 |
Long, Ju | 1 |
Luo, Hao | 1 |
Mason, Dan | 1 |
Pere J. Ferrando | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 5 |
Reports - Evaluative | 4 |
Reports - Descriptive | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 1 |
What Works Clearinghouse Rating
Pere J. Ferrando; Ana Hernández-Dorado; Urbano Lorenzo-Seva – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A frequent criticism of exploratory factor analysis (EFA) is that it does not allow correlated residuals to be modelled, while they can be routinely specified in the confirmatory (CFA) model. In this article, we propose an EFA approach in which both the common factor solution and the residual matrix are unrestricted (i.e., the correlated residuals…
Descriptors: Correlation, Factor Analysis, Models, Goodness of Fit
Vuolo, Mike – Sociological Methods & Research, 2017
Often in sociology, researchers are confronted with nonnormal variables whose joint distribution they wish to explore. Yet, assumptions of common measures of dependence can fail or estimating such dependence is computationally intensive. This article presents the copula method for modeling the joint distribution of two random variables, including…
Descriptors: Sociology, Research Methodology, Social Science Research, Models
Lee, Hsun-Ming; Long, Ju; Visinescu, Lucian L. – Journal of Information Technology Education: Research, 2016
Developing Business Intelligence (BI) has been a top priority for enterprise executives in recent years. To meet these demands, universities need to prepare students to work with BI in enterprise settings. In this study, we considered a business simulator that offers students opportunities to apply BI and make top-management decisions in a system…
Descriptors: Correlation, Business, Intelligence, Business Administration Education
Ranger, Jochen; Kuhn, Jorg-Tobias – Journal of Educational and Behavioral Statistics, 2013
It is common practice to log-transform response times before analyzing them with standard factor analytical methods. However, sometimes the log-transformation is not capable of linearizing the relation between the response times and the latent traits. Therefore, a more general approach to response time analysis is proposed in the current…
Descriptors: Item Response Theory, Simulation, Reaction Time, Least Squares Statistics
Schochet, Peter Z. – Journal of Educational and Behavioral Statistics, 2011
For RCTs of education interventions, it is often of interest to estimate associations between student and mediating teacher practice outcomes, to examine the extent to which the study's conceptual model is supported by the data, and to identify specific mediators that are most associated with student learning. This article develops statistical…
Descriptors: Least Squares Statistics, Intervention, Academic Achievement, Correlation
Yang-Wallentin, Fan; Joreskog, Karl G.; Luo, Hao – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Ordinal variables are common in many empirical investigations in the social and behavioral sciences. Researchers often apply the maximum likelihood method to fit structural equation models to ordinal data. This assumes that the observed measures have normal distributions, which is not the case when the variables are ordinal. A better approach is…
Descriptors: Structural Equation Models, Factor Analysis, Least Squares Statistics, Computation
Weitzman, R. A. – Educational and Psychological Measurement, 2009
Building on the Kelley and Gulliksen versions of classical test theory, this article shows that a logistic model having only a single item parameter can account for varying item discrimination, as well as difficulty, by using item-test correlations to adjust incorrect-correct (0-1) item responses prior to an initial model fit. The fit occurs…
Descriptors: Item Response Theory, Test Items, Difficulty Level, Test Bias
Prevost, A. Toby; Mason, Dan; Griffin, Simon; Kinmonth, Ann-Louise; Sutton, Stephen; Spiegelhalter, David – Psychological Methods, 2007
Practical meta-analysis of correlation matrices generally ignores covariances (and hence correlations) between correlation estimates. The authors consider various methods for allowing for covariances, including generalized least squares, maximum marginal likelihood, and Bayesian approaches, illustrated using a 6-dimensional response in a series of…
Descriptors: Psychological Studies, Simulation, Behavior Modification, Least Squares Statistics
Wang, Zhongmiao; Thompson, Bruce – Journal of Experimental Education, 2007
In this study the authors investigated the use of 5 (i.e., Claudy, Ezekiel, Olkin-Pratt, Pratt, and Smith) R[squared] correction formulas with the Pearson r[squared]. The authors estimated adjustment bias and precision under 6 x 3 x 6 conditions (i.e., population [rho] values of 0.0, 0.1, 0.3, 0.5, 0.7, and 0.9; population shapes normal, skewness…
Descriptors: Effect Size, Correlation, Mathematical Formulas, Monte Carlo Methods

And Others; Drasgow, Fritz – Applied Psychological Measurement, 1979
A Monte Carlo experiment was used to evaluate four procedures for estimating the population squared cross-validity of a sample least squares regression equation. One estimator was particularly recommended. (Author/BH)
Descriptors: Correlation, Least Squares Statistics, Mathematical Formulas, Multiple Regression Analysis