NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 26 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
van Aert, Robbie C. M. – Research Synthesis Methods, 2023
The partial correlation coefficient (PCC) is used to quantify the linear relationship between two variables while taking into account/controlling for other variables. Researchers frequently synthesize PCCs in a meta-analysis, but two of the assumptions of the common equal-effect and random-effects meta-analysis model are by definition violated.…
Descriptors: Correlation, Meta Analysis, Sampling, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Sanghyun Hong; W. Robert Reed – Research Synthesis Methods, 2024
This study builds on the simulation framework of a recent paper by Stanley and Doucouliagos ("Research Synthesis Methods" 2023;14;515--519). S&D use simulations to make the argument that meta-analyses using partial correlation coefficients (PCCs) should employ a "suboptimal" estimator of the PCC standard error when…
Descriptors: Meta Analysis, Correlation, Weighted Scores, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Bakbergenuly, Ilyas; Hoaglin, David C.; Kulinskaya, Elena – Research Synthesis Methods, 2020
In random-effects meta-analysis the between-study variance ([tau][superscript 2]) has a key role in assessing heterogeneity of study-level estimates and combining them to estimate an overall effect. For odds ratios the most common methods suffer from bias in estimating [tau][superscript 2] and the overall effect and produce confidence intervals…
Descriptors: Meta Analysis, Statistical Bias, Intervals, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Baek, Eunkyeng; Luo, Wen; Henri, Maria – Journal of Experimental Education, 2022
It is common to include multiple dependent variables (DVs) in single-case experimental design (SCED) meta-analyses. However, statistical issues associated with multiple DVs in the multilevel modeling approach (i.e., possible dependency of error, heterogeneous treatment effects, and heterogeneous error structures) have not been fully investigated.…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Comparative Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Xinru; Dusseldorp, Elise; Meulman, Jacqueline J. – Research Synthesis Methods, 2019
In meta-analytic studies, there are often multiple moderators available (eg, study characteristics). In such cases, traditional meta-analysis methods often lack sufficient power to investigate interaction effects between moderators, especially high-order interactions. To overcome this problem, meta-CART was proposed: an approach that applies…
Descriptors: Correlation, Meta Analysis, Identification, Testing
Peer reviewed Peer reviewed
Direct linkDirect link
van Zundert, Camiel H. J.; Miocevic, Milica – Research Synthesis Methods, 2020
Synthesizing findings about the indirect (mediated) effect plays an important role in determining the mechanism through which variables affect one another. This simulation study compared six methods for synthesizing indirect effects: correlation-based MASEM, parameter-based MASEM, marginal likelihood synthesis, an adjustment to marginal likelihood…
Descriptors: Correlation, Comparative Analysis, Meta Analysis, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Hoyer, Annika; Kuss, Oliver – Research Synthesis Methods, 2019
Diagnostic test accuracy studies frequently report on sensitivities and specificities for more than one threshold of the diagnostic test under study. Although it is obvious that the information from all thresholds should be used for a meta-analysis, in practice, frequently, only a single pair of sensitivity and specificity is selected. To overcome…
Descriptors: Meta Analysis, Diagnostic Tests, Correlation, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Doleman, Brett; Freeman, Suzanne C.; Lund, Jonathan N.; Williams, John P.; Sutton, Alex J. – Research Synthesis Methods, 2020
This study aimed to determine for continuous outcomes dependent on baseline risk, whether funnel plot asymmetry may be due to statistical artefact rather than publication bias and evaluate a novel test to resolve this. Firstly, we conducted assessment for publication bias in nine meta-analyses of postoperative analgesics (344 trials with 25 348…
Descriptors: Outcomes of Treatment, Risk, Publications, Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Hedge, Craig; Powell, Georgina; Bompas, Aline; Sumner, Petroc – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2022
Response control or inhibition is one of the cornerstones of modern cognitive psychology, featuring prominently in theories of executive functioning and impulsive behavior. However, repeated failures to observe correlations between commonly applied tasks have led some theorists to question whether common response conflict processes even exist. A…
Descriptors: Individual Differences, Cognitive Ability, Cognitive Processes, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Pedder, Hugo; Boucher, Martin; Dias, Sofia; Bennetts, Margherita; Welton, Nicky J. – Research Synthesis Methods, 2020
Time-course model-based network meta-analysis (MBNMA) has been proposed as a framework to combine treatment comparisons from a network of randomized controlled trials reporting outcomes at multiple time-points. This can explain heterogeneity/inconsistency that arises by pooling studies with different follow-up times and allow inclusion of studies…
Descriptors: Simulation, Randomized Controlled Trials, Meta Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Jacobs, Perke; Viechtbauer, Wolfgang – Research Synthesis Methods, 2017
Meta-analyses are often used to synthesize the findings of studies examining the correlational relationship between two continuous variables. When only dichotomous measurements are available for one of the two variables, the biserial correlation coefficient can be used to estimate the product-moment correlation between the two underlying…
Descriptors: Sampling, Correlation, Meta Analysis, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Hong, Hwanhee; Chu, Haitao; Zhang, Jing; Carlin, Bradley P. – Research Synthesis Methods, 2016
Bayesian statistical approaches to mixed treatment comparisons (MTCs) are becoming more popular because of their flexibility and interpretability. Many randomized clinical trials report multiple outcomes with possible inherent correlations. Moreover, MTC data are typically sparse (although richer than standard meta-analysis, comparing only two…
Descriptors: Bayesian Statistics, Meta Analysis, Outcomes of Treatment, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Trikalinos, Thomas A.; Hoaglin, David C.; Small, Kevin M.; Terrin, Norma; Schmid, Christopher H. – Research Synthesis Methods, 2014
Existing methods for meta-analysis of diagnostic test accuracy focus primarily on a single index test. We propose models for the joint meta-analysis of studies comparing multiple index tests on the same participants in paired designs. These models respect the grouping of data by studies, account for the within-study correlation between the tests'…
Descriptors: Meta Analysis, Diagnostic Tests, Accuracy, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lohnas, Lynn J.; Kahana, Michael J. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2014
According to the retrieved context theory of episodic memory, the cue for recall of an item is a weighted sum of recently activated cognitive states, including previously recalled and studied items as well as their associations. We show that this theory predicts there should be compound cuing in free recall. Specifically, the temporal contiguity…
Descriptors: Cues, Recall (Psychology), Meta Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Hafdahl, Adam R. – Journal of Educational and Behavioral Statistics, 2008
Monte Carlo studies of several fixed-effects methods for combining and comparing correlation matrices have shown that two refinements improve estimation and inference substantially. With rare exception, however, these simulations have involved homogeneous data analyzed using conditional meta-analytic procedures. The present study builds on…
Descriptors: Monte Carlo Methods, Correlation, Matrices, Computation
Previous Page | Next Page ยป
Pages: 1  |  2