NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 16 to 30 of 109 results Save | Export
Ben-Michael, Eli; Feller, Avi; Rothstein, Jesse – Grantee Submission, 2022
Staggered adoption of policies by different units at different times creates promising opportunities for observational causal inference. Estimation remains challenging, however, and common regression methods can give misleading results. A promising alternative is the synthetic control method (SCM), which finds a weighted average of control units…
Descriptors: Causal Models, Statistical Inference, Computation, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Journal of Educational and Behavioral Statistics, 2025
Analyzing heterogeneous treatment effects (HTEs) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and preintervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Baek, Eunkyeng; Luo, Wen; Henri, Maria – Journal of Experimental Education, 2022
It is common to include multiple dependent variables (DVs) in single-case experimental design (SCED) meta-analyses. However, statistical issues associated with multiple DVs in the multilevel modeling approach (i.e., possible dependency of error, heterogeneous treatment effects, and heterogeneous error structures) have not been fully investigated.…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Comparative Analysis, Statistical Inference
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chen, Lujie Karen; Ramsey, Joseph; Dubrawski, Artur – Journal of Educational Data Mining, 2021
Human one-on-one coaching involves complex multimodal interactions. Successful coaching requires teachers to closely monitor students' cognitive-affective states and provide support of optimal type, timing, and amount. However, most of the existing human tutoring studies focus primarily on verbal interactions and have yet to incorporate the rich…
Descriptors: Causal Models, Coaching (Performance), Statistical Analysis, Correlation
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Annenberg Institute for School Reform at Brown University, 2024
Analyzing heterogeneous treatment effects (HTE) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and pre-intervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Gomm, Roger – British Educational Research Journal, 2022
This is a methodological critique of research by the Best Practice in Grouping Students (BPGS) project claiming teacher bias in allocating students to first-year secondary school mathematics teaching sets ("British Educational Research Journal," 45(4), 873-897 [EJ1223692]). The research assumes that bias could be shown by non-random…
Descriptors: Best Practices, Grouping (Instructional Purposes), Secondary School Students, Mathematics Tests
Batley, Prathiba Natesan; Minka, Tom; Hedges, Larry Vernon – Grantee Submission, 2020
Immediacy is one of the necessary criteria to show strong evidence of treatment effect in single case experimental designs (SCEDs). With the exception of Natesan and Hedges (2017) no inferential statistical tool has been used to demonstrate or quantify it until now. We investigate and quantify immediacy by treating the change-points between the…
Descriptors: Bayesian Statistics, Monte Carlo Methods, Statistical Inference, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Duxbury, Scott W. – Sociological Methods & Research, 2023
This study shows that residual variation can cause problems related to scaling in exponential random graph models (ERGM). Residual variation is likely to exist when there are unmeasured variables in a model--even those uncorrelated with other predictors--or when the logistic form of the model is inappropriate. As a consequence, coefficients cannot…
Descriptors: Graphs, Scaling, Research Problems, Models
Xinran Li; Peng Ding – Grantee Submission, 2018
Frequentists' inference often delivers point estimators associated with confidence intervals or sets for parameters of interest. Constructing the confidence intervals or sets requires understanding the sampling distributions of the point estimators, which, in many but not all cases, are related to asymptotic Normal distributions ensured by central…
Descriptors: Correlation, Intervals, Sampling, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Geldhof, G. John; Anthony, Katherine P.; Selig, James P.; Mendez-Luck, Carolyn A. – International Journal of Behavioral Development, 2018
The existence of several accessible sources has led to a proliferation of mediation models in the applied research literature. Most of these sources assume endogenous variables (e.g., M, and Y) have normally distributed residuals, precluding models of binary and/or count data. Although a growing body of literature has expanded mediation models to…
Descriptors: Regression (Statistics), Statistical Analysis, Evaluation Methods, Correlation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Banjanovic, Erin S.; Osborne, Jason W. – Practical Assessment, Research & Evaluation, 2016
Confidence intervals for effect sizes (CIES) provide readers with an estimate of the strength of a reported statistic as well as the relative precision of the point estimate. These statistics offer more information and context than null hypothesis statistic testing. Although confidence intervals have been recommended by scholars for many years,…
Descriptors: Computation, Statistical Analysis, Effect Size, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Valente, Matthew J.; Gonzalez, Oscar; Miocevic, Milica; MacKinnon, David P. – Educational and Psychological Measurement, 2016
Methods to assess the significance of mediated effects in education and the social sciences are well studied and fall into two categories: single sample methods and computer-intensive methods. A popular single sample method to detect the significance of the mediated effect is the test of joint significance, and a popular computer-intensive method…
Descriptors: Structural Equation Models, Sampling, Statistical Inference, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Educational and Psychological Measurement, 2018
Cluster randomized trials involving participants nested within intact treatment and control groups are commonly performed in various educational, psychological, and biomedical studies. However, recruiting and retaining intact groups present various practical, financial, and logistical challenges to evaluators and often, cluster randomized trials…
Descriptors: Multivariate Analysis, Sampling, Statistical Inference, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Wiedermann, Wolfgang; von Eye, Alexander – International Journal of Behavioral Development, 2015
The concept of direction dependence has attracted growing attention due to its potential to help decide which of two competing linear regression models (X ? Y or Y ? X) is more likely to reflect the correct causal flow. Several tests have been proposed to evaluate hypotheses compatible with direction dependence. In this issue, Thoemmes (2015)…
Descriptors: Regression (Statistics), Correlation, Influences, Predictor Variables
Yan, Yilin – ProQuest LLC, 2018
The development in information science has enabled an explosive growth of data, which attracts more and more researchers to engage in the field of big data analytics. Noticeably, in many real-world applications, large amounts of data are imbalanced data since the events of interests occur infrequently. Classification of imbalanced data is an…
Descriptors: Information Science, Information Retrieval, Multimedia Materials, Data
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8