NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Nicolas Dietrich; Gaëlle Lebrun; Kalyani Kentheswaran; Mathias Monnot; Patrick Loulergue; Carine Franklin; Florence Teddé-Zambelli; Chafiaa Djouadi; Sébastien Leveneur; Mallorie Tourbin; Yolaine Bessie`re; Carole Coufort-Saudejaud; Annabelle Couvert; Eric Schaer – Journal of Chemical Education, 2022
Women are increasingly present in the field of engineering, but despite a significant female presence, it has been found that the programs continue to make no reference to women scientists. In chemical engineering, for example, all the names of scientists mentioned in the programs belong to men only. To test this hypothesis of over-representation…
Descriptors: Females, Disproportionate Representation, Engineering, Engineering Education
Peer reviewed Peer reviewed
Anderson, Timothy J. – Chemical Engineering Education, 1990
Presents a synopsis of four lectures given in an elective senior-level electronic material processing course to introduce solid state electronics. Provides comparisons of a large scale chemical processing plant and an integrated circuit. (YP)
Descriptors: Chemical Engineering, College Science, Course Content, Electric Circuits
Peer reviewed Peer reviewed
Takoudis, Christos G. – Chemical Engineering Education, 1990
Discusses chemical vapor deposition epitaxy on patternless and patterned substrates for an electronic materials processing course. Describes the processs types and features of epitaxy. Presents some potential problems of epitaxy. Lists 38 references. (YP)
Descriptors: Chemical Engineering, Chemical Reactions, College Science, Course Content
Peer reviewed Peer reviewed
Lauffenburger, Douglas A. – Chemical Engineering Education, 1989
Gives an overview of a course in chemical engineering entitled "Cellular Bioengineering," dealing with how chemical engineering principles can be applied to molecular cell biology. Topics used are listed and some key references are discussed. Listed are 85 references. (YP)
Descriptors: Biology, Chemical Engineering, College Science, Course Content
Peer reviewed Peer reviewed
Solen, Kenneth A.; Kuchar, Marvin C. – Chemical Engineering Education, 1990
Presents some principles for specifying general classes of polymers for predicting relative chemical attack from acids, bases, oxidants, and certain common antagonists. Also discusses predicting relative solvent effects. Suggests uses of this information in two or three lectures in a chemical engineering materials course. (YP)
Descriptors: Chemical Engineering, Chemical Reactions, College Science, Course Content
Peer reviewed Peer reviewed
Hess, Dennis W. – Chemical Engineering Education, 1990
Presents a model for silicon oxidation in the manufacture of silicon devices and integrated circuits. Provides homework problems and their solutions. (YP)
Descriptors: Chemical Engineering, Chemical Reactions, College Science, Course Content
Peer reviewed Peer reviewed
Kumar, Ashok; And Others – Chemical Engineering Education, 1989
Provides an overview of the Computer-Aided Management of Emergency Operations (CAMEO) model and its use in the classroom as a training tool in the "Hazardous Chemical Spills" course. Presents six problems illustrating classroom use of CAMEO. Lists 16 references. (YP)
Descriptors: Chemical Engineering, College Science, Computer Oriented Programs, Course Content
Peer reviewed Peer reviewed
Abu-Khalaf, Aziz M. – Chemical Engineering Education (CEE), 1998
Reviews the current goals of a laboratory course and describes experiences in using laboratory time to cover several important topics related to industry and academia. Discusses several subjects and presents related experiments. Contains 184 references. (DDR)
Descriptors: Chemical Engineering, College Curriculum, Course Content, Curriculum Development
Peer reviewed Peer reviewed
Douglas, J. M.; Kirkwood, R. L. – Chemical Engineering Education, 1989
Discussed is a method to teach undergraduate students how to complete a conceptual design. Presents three tools to use: (1) how to use order-of-magnitude arguments to simplify problems, (2) how to derive design heuristics, and (3) how to decompose large problems into a set of small, simple problems. (Author/MVL)
Descriptors: Chemical Engineering, College Science, Course Content, Engineering
Peer reviewed Peer reviewed
Lane, Alan M. – Chemical Engineering Education, 1989
Reported are the results of a 1987 survey of U.S. chemical engineering departments on health and safety. Some details of what is being done at the University of Alabama are provided. A syllabus and reading resources for a survey course on safety, health, environmental, and ethical issues are included. (MVL)
Descriptors: Chemical Engineering, College Science, Course Content, Curriculum Development