Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 13 |
Descriptor
Curriculum Development | 55 |
Engineering Education | 44 |
Higher Education | 38 |
Chemical Engineering | 33 |
Teaching Methods | 23 |
College Science | 21 |
Science Education | 21 |
Science Instruction | 20 |
Science Curriculum | 16 |
Course Content | 15 |
Engineering | 15 |
More ▼ |
Source
Chemical Engineering Education | 55 |
Author
Publication Type
Journal Articles | 54 |
Reports - Descriptive | 25 |
Guides - Classroom - Teacher | 22 |
Reports - Research | 6 |
Speeches/Meeting Papers | 3 |
Opinion Papers | 2 |
Guides - General | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 12 |
Postsecondary Education | 9 |
High Schools | 1 |
Secondary Education | 1 |
Audience
Practitioners | 27 |
Teachers | 14 |
Administrators | 10 |
Policymakers | 1 |
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Alexis N. Prybutok; Ayinoluwa Abegunde; Kenzie Sanroman Gutierrez; Lauren Simitz; Chloe Archuleta; Jennifer Cole – Chemical Engineering Education, 2024
Engineering curriculum often fails to connect content and decisions to impacts on diverse, particularly marginalized, communities. Given that integration of social justice ideas into curriculum is currently uncommon among most faculty, we provide resources in the form of a workshop to help catalyze these efforts by teaching faculty how to…
Descriptors: Chemical Engineering, Social Justice, Racism, Workshops
Helmbrecht, Hawley; Nance, Elizabeth – Chemical Engineering Education, 2022
Tutorials for EXperimentalisT Interactive LEarning (TEXTILE) is an interactive semi-linear module-based curriculum for training students at various educational levels on data science methodologies currently utilized by research laboratories. We show how we developed our eleven module TEXTILE program to train 15 students from high school,…
Descriptors: Data Science, Methods, Science Laboratories, High School Students
Lewin, Daniel Roberto; Barzilai, Abigail – Chemical Engineering Education, 2021
The capstone design sequence provides chemical engineering students with the opportunity to demonstrate mastery in process engineering, acquired during their entire degree, and is the ultimate "reality check" in outcome verification. This paper describes the current status of the design sequence followed by chemical engineering students…
Descriptors: Capstone Experiences, Flipped Classroom, Chemical Engineering, Engineering Education
Butrus, Salwan; Greenman, Kevin; Khera, Eshita; Kopyeva, Irina; Nishii, Akira – Chemical Engineering Education, 2020
The interdisciplinary roots of chemical engineering have shaped its history and fostered its rapidly evolving nature. Through ongoing research, graduate students in chemical engineering departments remain abreast of the field's evolution. Yet core undergraduate curricula often fall short of introducing students to the breadth of current research…
Descriptors: Chemical Engineering, Student Research, Research Skills, Lecture Method
Godwin, Allison; Boudouris, Bryan W. – Chemical Engineering Education, 2020
An introductory sophomore-level chemical engineering course was redesigned, and this redesign included cyber-assisted learning through online videos, team formation, and team evaluation software. We compared the traditional 2018 course (n = 48) with the redesigned 2019 course (n = 67) on student persistence (DFW rates), motivation, and course…
Descriptors: Student Motivation, Chemical Engineering, Engineering Education, College Students
He, Q. Peter; Wang, Jin; Zhang, Rong; Johnson, Donald; Knight, Andrew; Polala, Ravali – Chemical Engineering Education, 2016
In view of potential demand for skilled engineers and competent researchers in the biofuels field, we have identified a significant gap between advanced biofuels research and undergraduate biofuels education in chemical engineering. To help bridge this gap, we created educational materials that systematically integrate biofuels technologies into…
Descriptors: Fuels, Teaching Methods, Researchers, Chemical Engineering
Koretsky, Milo D. – Chemical Engineering Education, 2015
This article reports implementation of a program-level innovation in 10 core undergraduate courses in which larger lecture courses are punctuated by smaller studios. Studios provide an intimate, "flipped" classroom environment where students interactively engage in the content presented in the previous lecture through guided worksheets…
Descriptors: Curriculum Development, Teaching Methods, Undergraduate Study, Program Implementation
Koretsky, Milo; Montfort, Devlin; Nolen, Susan Bobbitt; Bothwell, Michelle; Davis, Susannah; Sweeney, James – Chemical Engineering Education, 2018
We describe progress on a comprehensive, programmatic change initiative whose goal is to create an inclusive culture that fosters diversity and a shift towards more meaningful, consequential work. While this initiative has several elements that target different aspects of unit practices and culture, we focus here on pedagogical change. Our…
Descriptors: Chemical Engineering, Teaching Methods, Curriculum Development, Academic Achievement
Davis, Richard A.; Klein, James A. – Chemical Engineering Education, 2012
This paper presents our pedagogy for chemical process safety (CPS) education across the curriculum. Building on a unifying theme of "Conservation of Life" (COL), we have four goals: 1) Make students aware of CPS/COL principles, 2) Promote a culture of safety, 3) Assess student learning, 4) Require minimal resources. We discuss our experience and…
Descriptors: Safety, Chemical Engineering, Curriculum Development, Curriculum Implementation
Wankat, Phillip C. – Chemical Engineering Education, 2009
The Massachusetts Institute of Technology started the first US chemical engineering program six score years ago. Since that time, the chemical engineering curriculum has evolved. The latest versions of the curriculum are attempts to broaden chemical engineering to add product engineering, biology and nanotechnology to the traditional process…
Descriptors: Chemical Engineering, Engineering Education, Curriculum Development, Interdisciplinary Approach
Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B. – Chemical Engineering Education, 2007
Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…
Descriptors: Elective Courses, Biotechnology, Biology, Chemical Engineering

Newell, R. B.; And Others – Chemical Engineering Education, 1985
Discusses current problems in chemical engineering education at the University of Queensland (including those related to the laboratory, student/staff ration, literacy, motivation, course content, and structural changes). Also describes a proposed plan of the Queensland department to implement a scheme for resource-based education in chemical…
Descriptors: Chemical Engineering, College Instruction, Curriculum Development, Engineering Education

Heenan, William A.; Henley, Ernest J. – Chemical Engineering Education, 1977
Describes a sophisticated computer technique that analyzes subject matter to determine what prerequisite knowledge is needed. Presents illustrations of flow charts that can be constructed for a particular subject, showing the organization of curriculum modules. (MLH)
Descriptors: Computer Programs, Computers, Curriculum, Curriculum Development

Oerther, Daniel B. – Chemical Engineering Education, 2002
Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)
Descriptors: Course Descriptions, Curriculum Development, Higher Education, Molecular Biology

Uhl, Vincent W. – Chemical Engineering Education, 1982
Discusses the rationale for and execution of a senior design course. Includes topics on the development of a senior design project, nature of student assignments, prior training and attitudes of students, and future trends. (JN)
Descriptors: Chemistry, College Science, Course Descriptions, Curriculum Development