NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Maloney, Peter C.; Wilson, T. Hastings – BioScience, 1985
Constructs an evolutionary sequence to account for the diversity of ion pumps found today. Explanations include primary ion pumps in bacteria, features and distribution of ATP-driven pumps, preference for cation transport, and proton pump reversal. The integrated evolutionary hypothesis should encourage new experimental approaches. (DH)
Descriptors: Biology, College Science, Cytology, Evolution
Rothman, James E. – Scientific American, 1985
Relations between structure and function of the Golgi apparatus are emerging from recent laboratory work on this cellular organelle which modifies proteins, sorts them, and packages them for delivery. The structure's three specialized compartments are explained through discussions of the glycosylation pathway, density-gradient experiments,…
Descriptors: Biochemistry, College Science, Cytology, Higher Education
Bretscher, Mark S. – Scientific American, 1985
Cell membrane molecules form a simple, two-dimensional liquid controlling what enters and leaves the cell. Discusses cell membrane molecular architecture, plasma membranes, epithelial cells, cycles of endocytosis and exocytosis, and other topics. Indicates that some cells internalize, then recycle, membrane area equivalent to their entire surface…
Descriptors: Biochemistry, Biology, College Science, Cytology
Albersheim, Peter; Darvill, Alan G. – Scientific American, 1985
Related history and laboratory work which lead to isolation of oligosaccharins, a new class of regulatory molecules found in plant cell walls. These substances function in growth, development, reproduction, and defense. Mixtures of oligosaccharins and other hormones can stimulate growth of an undifferentiated callus, roots, vegetative…
Descriptors: Biochemistry, Botany, College Science, Cytology
Weber, Klaus; Osborn, Mary – Scientific American, 1985
Cytoplasmic proteins form a highly structured yet changeable matrix that affects cell shape, division, motion, and transport of vesicles and organelles. Types of microfilaments, research techniques, actin and myosin, tumor cells, and other topics are addressed. Evidence indicates that the cell matrix might have a bearing on metabolism. (DH)
Descriptors: Biochemistry, Biology, College Science, Cytology
Tonegawa, Susumu – Scientific American, 1985
The immune system includes the most diverse proteins known because they are encoded by hundreds of scattered gene fragments which can be combined in millions or billions of ways. Events of immune response, binding of antigens, antibody structure, T-cell receptors, and other immunologically-oriented topics are discussed. (DH)
Descriptors: Biochemistry, Biology, College Science, Cytology
Berridge, Michael J. – Scientific American, 1985
Only a few substances serve as signals within cells; this indicates that internal signal pathways are remarkably universal. The variety of physiological and biochemical processes regulated by known messengers is discussed along with chemical structures, pathways, inositol-lipid cycles, and cell growth regulation. (DH)
Descriptors: Biochemistry, Biology, College Science, Cytology
Wilson, Allan C. – Scientific American, 1985
Discovery that mutations accumulate at steady rates over time in the genes of all lineages of plants and animals has led to new insights into evolution at the molecular and organismal levels. Discusses molecular evolution, examining deoxyribonuclei acid (DNA) sequences, morphological distances, and codon rate of change. (DH)
Descriptors: Biology, College Science, Cytology, DNA
Caplan, Arnold I. – Scientific American, 1984
Cartilage is a fundamental biological material that helps to shape the body and then helps to support it. Its fundamental properties of strength and resilience are explained in terms of the tissue's molecular structure. (JN)
Descriptors: Biology, College Science, Cytology, Higher Education
Peer reviewed Peer reviewed
Erickson, John – American Biology Teacher, 1983
Focusing on the centromere (kinetochore), discusses what term should be used to represent this cellular component. Also discusses centromere/kinetochore replication, structure of the kinetochore, and the nature of the binding material that holds until anaphase of mitosis and meiosis. (JN)
Descriptors: Biology, College Science, Cytology, High Schools
Snyder, Solomon H. – Scientific American, 1985
Chemical messengers mediate long-range hormonal communication and short-range neural communication between cells. Background information on peptides, steroids, neuropeptides, and specialized enzymes is given. Investigations reveal that the two systems have many common intercellular messenger molecules. (DH)
Descriptors: Biochemistry, Biology, College Science, Cytology
Gehring, Walter J. – Scientific American, 1985
Basic architecture of embryo development appears to be under homeobox control (a short stretch of DNA). Outlines research on this genetic segment in fruit flies which led to identification of this control on the embryo's spatial organization. Indicates that molecular mechanisms underlying development may be much more universal than previously…
Descriptors: Biology, College Science, Cytology, DNA
Peer reviewed Peer reviewed
Kandel, Eric R.; Schwartz, James H. – Science, 1982
Describes how a behavioral system in Aplysia (marine snail) can be used to examine mechanisms of several forms of learning at different levels of analysis: behavioral, cell-physiological, ultrastructural, and molecular. Focusing on short-term sensitization, suggests how molecular mechanisms can be extended to explain long-term memory and classical…
Descriptors: Animal Behavior, Associative Learning, Biochemistry, Biology