NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Does not meet standards1
Showing 1 to 15 of 76 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gregory Chernov – Evaluation Review, 2025
Most existing solutions to the current replication crisis in science address only the factors stemming from specific poor research practices. We introduce a novel mechanism that leverages the experts' predictive abilities to analyze the root causes of replication failures. It is backed by the principle that the most accurate predictor is the most…
Descriptors: Replication (Evaluation), Prediction, Scientific Research, Failure
Peer reviewed Peer reviewed
Direct linkDirect link
Panchompoo Wisittanawat; Richard Lehrer – Cognition and Instruction, 2024
This report characterizes forms of dialogic support that a sixth-grade teacher generated during whole-class and small-group conversations to help students develop a practice of statistical modeling. During four weeks of instruction, students constructed and revised models to account for variability and uncertainty across a variety of random…
Descriptors: Statistics Education, Mathematical Models, Grade 6, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Yan Xia; Selim Havan – Educational and Psychological Measurement, 2024
Although parallel analysis has been found to be an accurate method for determining the number of factors in many conditions with complete data, its application under missing data is limited. The existing literature recommends that, after using an appropriate multiple imputation method, researchers either apply parallel analysis to every imputed…
Descriptors: Data Interpretation, Factor Analysis, Statistical Inference, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Beechey, Timothy – Journal of Speech, Language, and Hearing Research, 2023
Purpose: This article provides a tutorial introduction to ordinal pattern analysis, a statistical analysis method designed to quantify the extent to which hypotheses of relative change across experimental conditions match observed data at the level of individuals. This method may be a useful addition to familiar parametric statistical methods…
Descriptors: Hypothesis Testing, Multivariate Analysis, Data Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2022
Takers of educational tests often receive proficiency levels instead of or in addition to scaled scores. For example, proficiency levels are reported for the Advanced Placement (AP®) and U.S. Medical Licensing examinations. Technical difficulties and other unforeseen events occasionally lead to missing item scores and hence to incomplete data on…
Descriptors: Computation, Data Analysis, Educational Testing, Accuracy
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Wilkerson, Michelle Hoda; Lanouette, Kathryn; Shareff, Rebecca L. – Mathematical Thinking and Learning: An International Journal, 2022
Data preparation (also called "wrangling" or "cleaning") -- the evaluation and manipulation of data prior to formal analysis -- is often dismissed as a precursor to meaningful engagement with a dataset. Here, we re-envision data preparation in light of calls to prepare students for a data-rich world. Traditionally, curricular…
Descriptors: Data Science, Information Literacy, Data Analysis, Secondary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Bay Arinze – Journal of Statistics and Data Science Education, 2023
Data Analytics has grown dramatically in importance and in the level of business deployments in recent years. It is used across most functional areas and applications, some of the latter including market campaigns, detecting fraud, determining credit, identifying assembly line defects, health services and many others. Indeed, the realm of…
Descriptors: Data Analysis, Elections, Simulation, Statistics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Avery H. Closser; Adam Sales; Anthony F. Botelho – Educational Technology Research and Development, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data to study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Haynes-Brown, Tashane K. – Journal of Mixed Methods Research, 2023
The purpose of this article is to illustrate the dynamic process involved in developing and utilizing a theoretical model in a mixed methods study. Specifically, I illustrate how the theoretical model can serve as the starting point in framing the study, as a lens for guiding the data collection and analysis, and as the end point in explaining the…
Descriptors: Theories, Models, Mixed Methods Research, Teacher Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Dennis Klinkhammer; Julia Rüther; Michael Schemmann – Adult Education Quarterly: A Journal of Research and Theory, 2024
Building on previous work on the civic returns of adult learning, this article examines the association between adult education, personality traits, and demands for civic participation or volunteering. Based on National Education Panel Study data, the study finds openness to be a crucial personality trait for participating in further training, as…
Descriptors: Adult Education, Personality Traits, Citizen Participation, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Hao, Jiangang; Ho, Tin Kam – Journal of Educational and Behavioral Statistics, 2019
Machine learning is a popular topic in data analysis and modeling. Many different machine learning algorithms have been developed and implemented in a variety of programming languages over the past 20 years. In this article, we first provide an overview of machine learning and clarify its difference from statistical inference. Then, we review…
Descriptors: Artificial Intelligence, Statistical Inference, Data Analysis, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Sullivan, Patrick – Mathematics Teacher: Learning and Teaching PK-12, 2022
Probabilistic reasoning underpins much of middle school students' future work in data analysis and inferential statistics. Unfortunately for many middle school students, probabilistic reasoning is not intuitive. One specific area in which students seem to struggle is determining the probability of compound events (Moritz and Watson 2000). Research…
Descriptors: Mathematics Instruction, Thinking Skills, Middle School Students, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Kazak, Sibel; Pratt, Dave – Research in Mathematics Education, 2021
We examine the challenges of teaching probability through the use of modelling. We argue how an integrated modelling approach might facilitate a coordinated understanding of distribution by marrying theoretical and data-oriented perspectives and present probability as more connected to the social lives of modern-day students. Research is, however,…
Descriptors: Teaching Methods, Mathematics Instruction, Faculty Development, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Rollins, Derrick, Sr. – Chemical Engineering Education, 2017
Statistical inference simply means to draw a conclusion based on information that comes from data. Error bars are the most commonly used tool for data analysis and inference in chemical engineering data studies. This work demonstrates, using common types of data collection studies, the importance of specifying the statistical model for sound…
Descriptors: Data Analysis, Statistical Inference, Chemical Engineering, Models
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6