NotesFAQContact Us
Collection
Advanced
Search Tips
Location
Laws, Policies, & Programs
Assessments and Surveys
Trends in International…1
What Works Clearinghouse Rating
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hecht, Martin; Voelkle, Manuel C. – International Journal of Behavioral Development, 2021
The analysis of cross-lagged relationships is a popular approach in prevention research to explore the dynamics between constructs over time. However, a limitation of commonly used cross-lagged models is the requirement of equally spaced measurement occasions that prevents the usage of flexible longitudinal designs and complicates cross-study…
Descriptors: Models, Longitudinal Studies, Prevention, Time
Peer reviewed Peer reviewed
Direct linkDirect link
Tiahrt, Thomas; Hanus, Bartlomiej; Porter, Jason C. – Decision Sciences Journal of Innovative Education, 2022
Firms desire graduates capable of executing current and future business practices, many of which revolve around data. To meet those needs, we shifted the orientation of our required information systems course from technology to data. Instead of a survey of information systems, students learn the data acquisition-preparation-mining-presentation…
Descriptors: Information Systems, Information Science Education, Computer Software, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Marina E.; Misra, Ram; Berenson, Mark – Decision Sciences Journal of Innovative Education, 2022
In the era of artificial intelligence (AI), big data (BD), and digital transformation (DT), analytics students should gain the ability to solve business problems by integrating various methods. This teaching brief illustrates how two such methods--Bayesian analysis and Markov chains--can be combined to enhance student learning using the Analytics…
Descriptors: Bayesian Statistics, Programming Languages, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Arenson, Ethan A.; Karabatsos, George – Grantee Submission, 2017
Item response models typically assume that the item characteristic (step) curves follow a logistic or normal cumulative distribution function, which are strictly monotone functions of person test ability. Such assumptions can be overly-restrictive for real item response data. We propose a simple and more flexible Bayesian nonparametric IRT model…
Descriptors: Bayesian Statistics, Item Response Theory, Nonparametric Statistics, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Poon, Wai-Yin; Wang, Hai-Bin – Psychometrika, 2010
A new class of parametric models that generalize the multivariate probit model and the errors-in-variables model is developed to model and analyze ordinal data. A general model structure is assumed to accommodate the information that is obtained via surrogate variables. A hybrid Gibbs sampler is developed to estimate the model parameters. To…
Descriptors: Correlation, Psychometrics, Models, Measurement
Enders, Craig K. – Guilford Press, 2010
Walking readers step by step through complex concepts, this book translates missing data techniques into something that applied researchers and graduate students can understand and utilize in their own research. Enders explains the rationale and procedural details for maximum likelihood estimation, Bayesian estimation, multiple imputation, and…
Descriptors: Data Analysis, Error of Measurement, Research Problems, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Mariano, Louis T.; McCaffrey, Daniel F.; Lockwood, J. R. – Journal of Educational and Behavioral Statistics, 2010
There is an increasing interest in using longitudinal measures of student achievement to estimate individual teacher effects. Current multivariate models assume each teacher has a single effect on student outcomes that persists undiminished to all future test administrations (complete persistence [CP]) or can diminish with time but remains…
Descriptors: Persistence, Academic Achievement, Data Analysis, Teacher Influence
Rai, Dovan; Gong, Yue; Beck, Joseph E. – International Working Group on Educational Data Mining, 2009
Student modeling is a widely used approach to make inference about a student's attributes like knowledge, learning, etc. If we wish to use these models to analyze and better understand student learning there are two problems. First, a model's ability to predict student performance is at best weakly related to the accuracy of any one of its…
Descriptors: Data Analysis, Statistical Analysis, Probability, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Rouder, Jeffrey N.; Lu, Jun; Sun, Dongchu; Speckman, Paul; Morey, Richard; Naveh-Benjamin, Moshe – Psychometrika, 2007
The theory of signal detection is convenient for measuring mnemonic ability in recognition memory paradigms. In these paradigms, randomly selected participants are asked to study randomly selected items. In practice, researchers aggregate data across items or participants or both. The signal detection model is nonlinear; consequently, analysis…
Descriptors: Simulation, Recognition (Psychology), Computation, Mnemonics
Seltzer, Michael; Choi, Kilchan; Thum, Yeow Meng – 2002
In intervention studies, it is important to assess whether one program might be more effective for individuals with extreme initial difficulties, while another might be more effective for individuals with less extreme initial difficulties. In setting in which time-series data are obtained for each person, this entails examining interactions…
Descriptors: Bayesian Statistics, Data Analysis, Estimation (Mathematics), Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Gupta, Jayanti; Damien, Paul – Psychometrika, 2005
Fully and partially ranked data arise in a variety of contexts. From a Bayesian perspective, attention has focused on distance-based models; in particular, the Mallows model and extensions thereof. In this paper, a class of prior distributions, the "Binary Tree," is developed on the symmetric group. The attractive features of the class are: it…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Statistical Data
Peer reviewed Peer reviewed
Direct linkDirect link
Stern, Hal S. – Psychological Methods, 2005
I. Klugkist, O. Laudy, and H. Hoijtink (2005) presented a Bayesian approach to analysis of variance models with inequality constraints. Constraints may play 2 distinct roles in data analysis. They may represent prior information that allows more precise inferences regarding parameter values, or they may describe a theory to be judged against the…
Descriptors: Probability, Inferences, Bayesian Statistics, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Segawa, Eisuke – Journal of Educational and Behavioral Statistics, 2005
Multi-indicator growth models were formulated as special three-level hierarchical generalized linear models to analyze growth of a trait latent variable measured by ordinal items. Items are nested within a time-point, and time-points are nested within subject. These models are special because they include factor analytic structure. This model can…
Descriptors: Bayesian Statistics, Mathematical Models, Factor Analysis, Computer Simulation