NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 30 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ihnwhi Heo; Fan Jia; Sarah Depaoli – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The Bayesian piecewise growth model (PGM) is a useful class of models for analyzing nonlinear change processes that consist of distinct growth phases. In applications of Bayesian PGMs, it is important to accurately capture growth trajectories and carefully consider knot placements. The presence of missing data is another challenge researchers…
Descriptors: Bayesian Statistics, Goodness of Fit, Data Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Jie Fang; Zhonglin Wen; Kit-Tai Hau – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Currently, dynamic structural equation modeling (DSEM) and residual DSEM (RDSEM) are commonly used in testing intensive longitudinal data (ILD). Researchers are interested in ILD mediation models, but their analyses are challenging. The present paper mathematically derived, empirically compared, and step-by-step demonstrated three types (i.e.,…
Descriptors: Structural Equation Models, Mediation Theory, Data Analysis, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Han Du; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Real data are unlikely to be exactly normally distributed. Ignoring non-normality will cause misleading and unreliable parameter estimates, standard error estimates, and model fit statistics. For non-normal data, researchers have proposed a distributionally-weighted least squares (DLS) estimator to combines the normal theory based generalized…
Descriptors: Least Squares Statistics, Matrices, Statistical Distributions, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaohui Luo; Yueqin Hu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Intensive longitudinal data has been widely used to examine reciprocal or causal relations between variables. However, these variables may not be temporally aligned. This study examined the consequences and solutions of the problem of temporal misalignment in intensive longitudinal data based on dynamic structural equation models. First the impact…
Descriptors: Structural Equation Models, Longitudinal Studies, Data Analysis, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaying Zheng; Ji Seung Yang; Jeffrey R. Harring – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Measuring change in an educational or psychological construct over time is often achieved by repeatedly administering the same items to the same examinees over time and fitting a second-order latent growth curve model. However, latent growth modeling with full information maximum likelihood (FIML) estimation becomes computationally challenging…
Descriptors: Longitudinal Studies, Data Analysis, Item Response Theory, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Larsen, Ross – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Missing data in the presence of upper level dependencies in multilevel models have never been thoroughly examined. Whereas first-level subjects are independent over time, the second-level subjects might exhibit nonzero covariances over time. This study compares 2 missing data techniques in the presence of a second-level dependency: multiple…
Descriptors: Data, Maximum Likelihood Statistics, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Lichtenberg, Peter A.; Paulson, Daniel – Structural Equation Modeling: A Multidisciplinary Journal, 2012
A multiple testing procedure for examining implications of the missing completely at random (MCAR) mechanism in incomplete data sets is discussed. The approach uses the false discovery rate concept and is concerned with testing group differences on a set of variables. The method can be used for ascertaining violations of MCAR and disproving this…
Descriptors: Data, Data Analysis, Older Adults, Intelligence Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Blozis, Shelley A.; Ge, Xiaojia; Xu, Shu; Natsuaki, Misaki N.; Shaw, Daniel S.; Neiderhiser, Jenae M.; Scaramella, Laura V.; Leve, Leslie D.; Reiss, David – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Missing data are common in studies that rely on multiple informant data to evaluate relationships among variables for distinguishable individuals clustered within groups. Estimation of structural equation models using raw data allows for incomplete data, and so all groups can be retained for analysis even if only 1 member of a group contributes…
Descriptors: Data, Structural Equation Models, Correlation, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Peugh, James L.; DiLillo, David; Panuzio, Jillian – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Mixed-dyadic data, collected from distinguishable (nonexchangeable) or indistinguishable (exchangeable) dyads, require statistical analysis techniques that model the variation within dyads and between dyads appropriately. The purpose of this article is to provide a tutorial for performing structural equation modeling analyses of cross-sectional…
Descriptors: Structural Equation Models, Data Analysis, Statistical Analysis, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Wu, Jiun-Yu; Kwok, Oi-man – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Both ad-hoc robust sandwich standard error estimators (design-based approach) and multilevel analysis (model-based approach) are commonly used for analyzing complex survey data with nonindependent observations. Although these 2 approaches perform equally well on analyzing complex survey data with equal between- and within-level model structures…
Descriptors: Structural Equation Models, Surveys, Data Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Siwei; Rovine, Michael J.; Molenaar, Peter C. M. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
This study investigated the performance of fit indexes in selecting a covariance structure for longitudinal data. Data were simulated to follow a compound symmetry, first-order autoregressive, first-order moving average, or random-coefficients covariance structure. We examined the ability of the likelihood ratio test (LRT), root mean square error…
Descriptors: Structural Equation Models, Goodness of Fit, Longitudinal Studies, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article is concerned with the question of whether the missing data mechanism routinely referred to as missing completely at random (MCAR) is statistically examinable via a test for lack of distributional differences between groups with observed and missing data, and related consequences. A discussion is initially provided, from a formal logic…
Descriptors: Data Analysis, Statistical Analysis, Probability, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Qi; Kwok, Oi-Man; Luo, Wen; Willson, Victor L. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Growth mixture modeling (GMM) is a relatively new technique for analyzing longitudinal data. However, when applying GMM, researchers might assume that the higher level (nonrepeated measure) units (e.g., students) are independent from each other even though it might not always be true. This article reports the results of a simulation study…
Descriptors: Longitudinal Studies, Data Analysis, Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Su-Young; Kim, Jee-Seon – Structural Equation Modeling: A Multidisciplinary Journal, 2012
This article investigates three types of stage-sequential growth mixture models in the structural equation modeling framework for the analysis of multiple-phase longitudinal data. These models can be important tools for situations in which a single-phase growth mixture model produces distorted results and can allow researchers to better understand…
Descriptors: Structural Equation Models, Data Analysis, Research Methodology, Longitudinal Studies
Previous Page | Next Page ยป
Pages: 1  |  2