Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 18 |
Descriptor
Bayesian Statistics | 19 |
Computer Software | 19 |
Data Analysis | 19 |
Models | 8 |
Information Retrieval | 5 |
Classification | 4 |
Computation | 4 |
Data Processing | 4 |
Intelligent Tutoring Systems | 4 |
Natural Language Processing | 4 |
Prediction | 4 |
More ▼ |
Source
Author
Enders, Craig K. | 2 |
Levy, Roy | 2 |
Romero, Cristobal, Ed. | 2 |
Baker, Ryan S. | 1 |
Barnes, Tiffany, Ed. | 1 |
Beck, Joseph E. | 1 |
Behrens, John T. | 1 |
Benson, Martin | 1 |
Berenson, Mark | 1 |
Boyd-Graber, Jordan | 1 |
Bradbury, Thomas N. | 1 |
More ▼ |
Publication Type
Education Level
Audience
Students | 2 |
Researchers | 1 |
Teachers | 1 |
Location
Australia | 1 |
Brazil | 1 |
Czech Republic | 1 |
Israel | 1 |
Massachusetts | 1 |
Netherlands | 1 |
North Carolina | 1 |
Pennsylvania | 1 |
Slovakia | 1 |
Spain | 1 |
Uruguay | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
MacArthur Communicative… | 1 |
Massachusetts Comprehensive… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Ziqian Xu – Grantee Submission, 2022
With the prevalence of missing data in social science research, it is necessary to use methods for handling missing data. One framework in which data with missing values can still be used for parameter estimation is the Bayesian framework. In this tutorial, different missing data mechanisms including Missing Completely at Random, Missing at…
Descriptors: Research Problems, Bayesian Statistics, Structural Equation Models, Data Analysis
Du, Han; Enders, Craig; Keller, Brian; Bradbury, Thomas N.; Karney, Benjamin R. – Grantee Submission, 2022
Missing data are exceedingly common across a variety of disciplines, such as educational, social, and behavioral science areas. Missing not at random (MNAR) mechanism where missingness is related to unobserved data is widespread in real data and has detrimental consequence. However, the existing MNAR-based methods have potential problems such as…
Descriptors: Bayesian Statistics, Data Analysis, Computer Simulation, Sample Size
Lijin Zhang; Xueyang Li; Zhiyong Zhang – Grantee Submission, 2023
The thriving developer community has a significant impact on the widespread use of R software. To better understand this community, we conducted a study analyzing all R packages available on CRAN. We identified the most popular topics of R packages by text mining the package descriptions. Additionally, using network centrality measures, we…
Descriptors: Computer Software, Programming Languages, Data Analysis, Visual Aids
Tiahrt, Thomas; Hanus, Bartlomiej; Porter, Jason C. – Decision Sciences Journal of Innovative Education, 2022
Firms desire graduates capable of executing current and future business practices, many of which revolve around data. To meet those needs, we shifted the orientation of our required information systems course from technology to data. Instead of a survey of information systems, students learn the data acquisition-preparation-mining-presentation…
Descriptors: Information Systems, Information Science Education, Computer Software, Undergraduate Students
Johnson, Marina E.; Misra, Ram; Berenson, Mark – Decision Sciences Journal of Innovative Education, 2022
In the era of artificial intelligence (AI), big data (BD), and digital transformation (DT), analytics students should gain the ability to solve business problems by integrating various methods. This teaching brief illustrates how two such methods--Bayesian analysis and Markov chains--can be combined to enhance student learning using the Analytics…
Descriptors: Bayesian Statistics, Programming Languages, Artificial Intelligence, Data Analysis
Günhan, Burak Kürsad; Röver, Christian; Friede, Tim – Research Synthesis Methods, 2020
Meta-analyses of clinical trials targeting rare events face particular challenges when the data lack adequate numbers of events for all treatment arms. Especially when the number of studies is low, standard random-effects meta-analysis methods can lead to serious distortions because of such data sparsity. To overcome this, we suggest the use of…
Descriptors: Meta Analysis, Medical Research, Drug Therapy, Bayesian Statistics
Xing, Wanli; Li, Chenglu; Chen, Guanhua; Huang, Xudong; Chao, Jie; Massicotte, Joyce; Xie, Charles – Journal of Educational Computing Research, 2021
Integrating engineering design into K-12 curricula is increasingly important as engineering has been incorporated into many STEM education standards. However, the ill-structured and open-ended nature of engineering design makes it difficult for an instructor to keep track of the design processes of all students simultaneously and provide…
Descriptors: Engineering Education, Design, Feedback (Response), Student Evaluation
Enders, Craig K.; Keller, Brian T.; Levy, Roy – Grantee Submission, 2018
Specialized imputation routines for multilevel data are widely available in software packages, but these methods are generally not equipped to handle a wide range of complexities that are typical of behavioral science data. In particular, existing imputation schemes differ in their ability to handle random slopes, categorical variables,…
Descriptors: Hierarchical Linear Modeling, Behavioral Science Research, Computer Software, Bayesian Statistics
Slater, Stefan; Joksimovic, Srecko; Kovanovic, Vitomir; Baker, Ryan S.; Gasevic, Dragan – Journal of Educational and Behavioral Statistics, 2017
In recent years, a wide array of tools have emerged for the purposes of conducting educational data mining (EDM) and/or learning analytics (LA) research. In this article, we hope to highlight some of the most widely used, most accessible, and most powerful tools available for the researcher interested in conducting EDM/LA research. We will…
Descriptors: Data Analysis, Data Processing, Computer Uses in Education, Educational Research
Wu, Mike; Davis, Richard L.; Domingue, Benjamin W.; Piech, Chris; Goodman, Noah – International Educational Data Mining Society, 2020
Item Response Theory (IRT) is a ubiquitous model for understanding humans based on their responses to questions, used in fields as diverse as education, medicine and psychology. Large modern datasets offer opportunities to capture more nuances in human behavior, potentially improving test scoring and better informing public policy. Yet larger…
Descriptors: Item Response Theory, Accuracy, Data Analysis, Public Policy
Kruschke, John K. – Journal of Experimental Psychology: General, 2013
Bayesian estimation for 2 groups provides complete distributions of credible values for the effect size, group means and their difference, standard deviations and their difference, and the normality of the data. The method handles outliers. The decision rule can accept the null value (unlike traditional "t" tests) when certainty in the estimate is…
Descriptors: Bayesian Statistics, Computation, Evaluation Methods, Computer Software
Xiong, Xiaolu; Zhao, Siyuan; Van Inwegen, Eric G.; Beck, Joseph E. – International Educational Data Mining Society, 2016
Over the last couple of decades, there have been a large variety of approaches towards modeling student knowledge within intelligent tutoring systems. With the booming development of deep learning and large-scale artificial neural networks, there have been empirical successes in a number of machine learning and data mining applications, including…
Descriptors: Intelligent Tutoring Systems, Computer Software, Bayesian Statistics, Knowledge Level
Valdés Aguirre, Benjamín; Ramírez Uresti, Jorge A.; du Boulay, Benedict – International Journal of Artificial Intelligence in Education, 2016
Sharing user information between systems is an area of interest for every field involving personalization. Recommender Systems are more advanced in this aspect than Intelligent Tutoring Systems (ITSs) and Intelligent Learning Environments (ILEs). A reason for this is that the user models of Intelligent Tutoring Systems and Intelligent Learning…
Descriptors: Intelligent Tutoring Systems, Models, Open Source Technology, Computers
Enders, Craig K. – Guilford Press, 2010
Walking readers step by step through complex concepts, this book translates missing data techniques into something that applied researchers and graduate students can understand and utilize in their own research. Enders explains the rationale and procedural details for maximum likelihood estimation, Bayesian estimation, multiple imputation, and…
Descriptors: Data Analysis, Error of Measurement, Research Problems, Maximum Likelihood Statistics
Rupp, Andre A.; Levy, Roy; Dicerbo, Kristen E.; Sweet, Shauna J.; Crawford, Aaron V.; Calico, Tiago; Benson, Martin; Fay, Derek; Kunze, Katie L.; Mislevy, Robert J.; Behrens, John T. – Journal of Educational Data Mining, 2012
In this paper we describe the development and refinement of "evidence rules" and "measurement models" within the "evidence model" of the "evidence-centered design" (ECD) framework in the context of the "Packet Tracer" digital learning environment of the "Cisco Networking Academy." Using…
Descriptors: Computer Networks, Evidence Based Practice, Design, Instructional Design
Previous Page | Next Page »
Pages: 1 | 2