Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 14 |
Descriptor
Data Analysis | 15 |
Educational Research | 15 |
Statistical Inference | 15 |
Research Problems | 6 |
Research Methodology | 5 |
Computation | 4 |
Foreign Countries | 4 |
Multivariate Analysis | 4 |
Randomized Controlled Trials | 4 |
Causal Models | 3 |
Error of Measurement | 3 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 11 |
Reports - Research | 10 |
Reports - Evaluative | 3 |
Guides - Non-Classroom | 1 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Audience
Researchers | 1 |
Location
United Kingdom | 2 |
United Kingdom (England) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
Teaching and Learning… | 1 |
What Works Clearinghouse Rating
Avery H. Closser; Adam Sales; Anthony F. Botelho – Grantee Submission, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data on study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Avery H. Closser; Adam Sales; Anthony F. Botelho – Educational Technology Research and Development, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data to study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
David Kaplan; Kjorte Harra – OECD Publishing, 2023
This report aims to showcase the value of implementing a Bayesian framework to analyse and report results from international large-scale surveys and provide guidance to users who want to analyse the data using this approach. The motivation for this report stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Statistical Inference, Data Analysis, Educational Research
Abulela, Mohammed A. A.; Harwell, Michael M. – Educational Sciences: Theory and Practice, 2020
Data analysis is a significant methodological component when conducting quantitative education studies. Guidelines for conducting data analyses in quantitative education studies are common but often underemphasize four important methodological components impacting the validity of inferences: quality of constructed measures, proper handling of…
Descriptors: Educational Research, Educational Researchers, Novices, Data Analysis
König, Christoph; van de Schoot, Rens – Educational Review, 2018
The ability of a scientific discipline to build cumulative knowledge depends on its predominant method of data analysis. A steady accumulation of knowledge requires approaches which allow researchers to consider results from comparable prior research. Bayesian statistics is especially relevant for establishing a cumulative scientific discipline,…
Descriptors: Bayesian Statistics, Educational Research, Educational Practices, Data Analysis
Motz, Benjamin A.; Carvalho, Paulo F.; de Leeuw, Joshua R.; Goldstone, Robert L. – Journal of Learning Analytics, 2018
To identify the ways teachers and educational systems can improve learning, researchers need to make causal inferences. Analyses of existing datasets play an important role in detecting causal patterns, but conducting experiments also plays an indispensable role in this research. In this article, we advocate for experiments to be embedded in real…
Descriptors: Causal Models, Statistical Inference, Inferences, Educational Experiments
Green, Jennifer L.; Smith, Wendy M.; Kerby, April T.; Blankenship, Erin E.; Schmid, Kendra K.; Carlson, Mary Alice – Statistics Education Research Journal, 2018
In this study, we examined how in-service middle-level mathematics teachers used statistics in their own classroom research. Using an embedded single-case design, we analyzed a purposefully selected sample of nine teachers' classroom research papers, identifying several themes within each phase of the statistical problem solving process to…
Descriptors: Introductory Courses, Statistics, Inservice Teacher Education, Mathematics Teachers
Herodotou, Christothea; Heiser, Sarah; Rienties, Bart – Open Learning, 2017
Randomised control trials (RCTs) are an evidence-based research approach which has not yet been adopted and widely used in open and distance education to inform educational policy and practice. Despite the challenges entailed in their application, RCTs hold the power to robustly evaluate the effects of educational interventions in distance…
Descriptors: Randomized Controlled Trials, Open Education, Distance Education, Feasibility Studies
Stapleton, Laura M.; McNeish, Daniel M.; Yang, Ji Seung – Educational Psychologist, 2016
Multilevel models are often used to evaluate hypotheses about relations among constructs when data are nested within clusters (Raudenbush & Bryk, 2002), although alternative approaches are available when analyzing nested data (Binder & Roberts, 2003; Sterba, 2009). The overarching goal of this article is to suggest when it is appropriate…
Descriptors: Hierarchical Linear Modeling, Data Analysis, Statistical Data, Multivariate Analysis
Pampaka, Maria; Hutcheson, Graeme; Williams, Julian – International Journal of Research & Method in Education, 2016
Missing data is endemic in much educational research. However, practices such as step-wise regression common in the educational research literature have been shown to be dangerous when significant data are missing, and multiple imputation (MI) is generally recommended by statisticians. In this paper, we provide a review of these advances and their…
Descriptors: Data Analysis, Statistical Inference, Error of Measurement, Computation
Cox, Bradley E.; McIntosh, Kadian; Reason, Robert D.; Terenzini, Patrick T. – Review of Higher Education, 2014
Nearly all quantitative analyses in higher education draw from incomplete datasets-a common problem with no universal solution. In the first part of this paper, we explain why missing data matter and outline the advantages and disadvantages of six common methods for handling missing data. Next, we analyze real-world data from 5,905 students across…
Descriptors: Data Analysis, Statistical Inference, Research Problems, Computation
Eide, Eric R.; Showalter, Mark H. – Economics of Education Review, 2012
Professors Richard J. Murnane and John B. Willett set out to capitalize on recent developments in education data and methodology by attempting to answer the following questions: How can new methods and data be applied most effectively in educational and social science research? What kinds of research designs are most appropriate? What kinds of…
Descriptors: Social Science Research, Research Methodology, Audiences, Usability
Drummond, Gordon B.; Vowler, Sarah L. – Advances in Physiology Education, 2011
Experimental data are analysed statistically to allow researchers to draw conclusions from a limited set of measurements. The hard fact is that researchers can never be certain that measurements from a sample will exactly reflect the properties of the entire group of possible candidates available to be studied (although using a sample is often the…
Descriptors: Educational Research, Statistical Inference, Data Interpretation, Probability
What Works Clearinghouse, 2014
This "What Works Clearinghouse Procedures and Standards Handbook (Version 3.0)" provides a detailed description of the standards and procedures of the What Works Clearinghouse (WWC). The remaining chapters of this Handbook are organized to take the reader through the basic steps that the WWC uses to develop a review protocol, identify…
Descriptors: Educational Research, Guides, Intervention, Classification
Blumberg, Carol Joyce – 1989
A subset of Statistical Process Control (SPC) methodology known as Control Charting is introduced. SPC methodology is a collection of graphical and inferential statistics techniques used to study the progress of phenomena over time. The types of control charts covered are the null X (mean), R (Range), X (individual observations), MR (moving…
Descriptors: Charts, Data Analysis, Educational Research, Evaluation Methods