NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Panchompoo Wisittanawat; Richard Lehrer – Cognition and Instruction, 2024
This report characterizes forms of dialogic support that a sixth-grade teacher generated during whole-class and small-group conversations to help students develop a practice of statistical modeling. During four weeks of instruction, students constructed and revised models to account for variability and uncertainty across a variety of random…
Descriptors: Statistics Education, Mathematical Models, Grade 6, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Bay Arinze – Journal of Statistics and Data Science Education, 2023
Data Analytics has grown dramatically in importance and in the level of business deployments in recent years. It is used across most functional areas and applications, some of the latter including market campaigns, detecting fraud, determining credit, identifying assembly line defects, health services and many others. Indeed, the realm of…
Descriptors: Data Analysis, Elections, Simulation, Statistics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Sullivan, Patrick – Mathematics Teacher: Learning and Teaching PK-12, 2022
Probabilistic reasoning underpins much of middle school students' future work in data analysis and inferential statistics. Unfortunately for many middle school students, probabilistic reasoning is not intuitive. One specific area in which students seem to struggle is determining the probability of compound events (Moritz and Watson 2000). Research…
Descriptors: Mathematics Instruction, Thinking Skills, Middle School Students, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Kazak, Sibel; Pratt, Dave – Research in Mathematics Education, 2021
We examine the challenges of teaching probability through the use of modelling. We argue how an integrated modelling approach might facilitate a coordinated understanding of distribution by marrying theoretical and data-oriented perspectives and present probability as more connected to the social lives of modern-day students. Research is, however,…
Descriptors: Teaching Methods, Mathematics Instruction, Faculty Development, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Sarafoglou, Alexandra; van der Heijden, Anna; Draws, Tim; Cornelisse, Joran; Wagenmakers, Eric-Jan; Marsman, Maarten – Psychology Learning and Teaching, 2022
Current developments in the statistics community suggest that modern statistics education should be structured holistically, that is, by allowing students to work with real data and to answer concrete statistical questions, but also by educating them about alternative frameworks, such as Bayesian inference. In this article, we describe how we…
Descriptors: Bayesian Statistics, Thinking Skills, Undergraduate Students, Psychology
Peer reviewed Peer reviewed
Direct linkDirect link
Dunn, Peter K.; Marshman, Margaret – Australian Mathematics Education Journal, 2020
Peter Dunn and Margaret Marshman present the second of their data files articles in which they discuss the statistical investigation cycle which describes the whole process of conducting a statistical research study. [For "The Data Files: A Series of Articles to Support Mathematics Teachers to Teach Statistics," see EJ1259108.]
Descriptors: Statistics, Data Analysis, Teaching Methods, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Day, Lorraine – Australian Primary Mathematics Classroom, 2014
Students recognise and analyse data and draw inferences. They represent, summarise and interpret data and undertake purposeful investigations involving the collection and interpretation of data… They develop an increasingly sophisticated ability to critically evaluate chance and data concepts and make reasoned judgments and decisions, as well as…
Descriptors: Foreign Countries, Statistics, Statistical Inference, Elementary Education
Peer reviewed Peer reviewed
Direct linkDirect link
Petocz, Peter; Sowey, Eric – Teaching Statistics: An International Journal for Teachers, 2012
The term "data snooping" refers to the practice of choosing which statistical analyses to apply to a set of data after having first looked at those data. Data snooping contradicts a fundamental precept of applied statistics, that the scheme of analysis is to be planned in advance. In this column, the authors shall elucidate the…
Descriptors: Hypothesis Testing, Statistical Analysis, Foreign Countries, Questioning Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Sanches, Cristina; Gouveia-Pereira, Maria; Carugati, Felice – British Journal of Educational Psychology, 2012
Background: The current paper is based on two different approaches. One is the relational model of authority (Tyler & Lind, 1992), which addresses the effects of justice perceptions on the legitimacy of authorities and behavioural compliance. The other is Emler and Reicher's theory (1995, 2005), which explains the involvement of adolescents in…
Descriptors: Evidence, Adolescents, Teaching Methods, Justice
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Suleman, Qaiser; Hussain, Ishtiaq – Journal of Education and Practice, 2016
The purpose of the research paper was to investigate the effect of eclectic learning approach on the academic achievement and retention of students in English at elementary level. A sample of forty students of 8th grade randomly selected from Government Boys High School Khurram District Karak was used. It was an experimental study and that's why…
Descriptors: Elementary School Students, Academic Achievement, School Holding Power, Pretests Posttests
Feng, Mingyu; Beck, Joseph E.; Heffernan, Neil T. – International Working Group on Educational Data Mining, 2009
A basic question of instructional interventions is how effective it is in promoting student learning. This paper presents a study to determine the relative efficacy of different instructional strategies by applying an educational data mining technique, learning decomposition. We use logistic regression to determine how much learning is caused by…
Descriptors: Data Analysis, Intelligent Tutoring Systems, Sampling, Statistical Inference