NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Does not meet standards1
Showing 31 to 45 of 97 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sarafoglou, Alexandra; van der Heijden, Anna; Draws, Tim; Cornelisse, Joran; Wagenmakers, Eric-Jan; Marsman, Maarten – Psychology Learning and Teaching, 2022
Current developments in the statistics community suggest that modern statistics education should be structured holistically, that is, by allowing students to work with real data and to answer concrete statistical questions, but also by educating them about alternative frameworks, such as Bayesian inference. In this article, we describe how we…
Descriptors: Bayesian Statistics, Thinking Skills, Undergraduate Students, Psychology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Alhadad, Sakinah S. J. – Journal of Learning Analytics, 2018
Understanding human judgement and decision making during visual inspection of data is of both practical and theoretical interest. While visualizing data is a commonly employed mechanism to support complex cognitive processes such as inference, judgement, and decision making, the process of supporting and scaffolding cognition through effective…
Descriptors: Visualization, Data Analysis, Evaluative Thinking, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Grice, James W.; Yepez, Maria; Wilson, Nicole L.; Shoda, Yuichi – Educational and Psychological Measurement, 2017
An alternative to null hypothesis significance testing is presented and discussed. This approach, referred to as observation-oriented modeling, is centered on model building in an effort to explicate the structures and processes believed to generate a set of observations. In terms of analysis, this novel approach complements traditional methods…
Descriptors: Hypothesis Testing, Models, Observation, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Dunn, Peter K.; Marshman, Margaret – Australian Mathematics Education Journal, 2020
Peter Dunn and Margaret Marshman present the second of their data files articles in which they discuss the statistical investigation cycle which describes the whole process of conducting a statistical research study. [For "The Data Files: A Series of Articles to Support Mathematics Teachers to Teach Statistics," see EJ1259108.]
Descriptors: Statistics, Data Analysis, Teaching Methods, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pek, Jolynn; Wong, Octavia; Wong, C. M. – Practical Assessment, Research & Evaluation, 2017
Data transformations have been promoted as a popular and easy-to-implement remedy to address the assumption of normally distributed errors (in the population) in linear regression. However, the application of data transformations introduces non-ignorable complexities which should be fully appreciated before their implementation. This paper adds to…
Descriptors: Data Analysis, Regression (Statistics), Statistical Inference, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2021
Large-scale assessments (LSAs) use Mislevy's "plausible value" (PV) approach to relate student proficiency to noncognitive variables administered in a background questionnaire. This method requires background variables to be completely observed, a requirement that is seldom fulfilled. In this article, we evaluate and compare the…
Descriptors: Data Analysis, Error of Measurement, Research Problems, Statistical Inference
Zhang, Zhiyong; Zhang, Danyang – Grantee Submission, 2021
Data science has maintained its popularity for about 20 years. This study adopts a bottom-up approach to understand what data science is by analyzing the descriptions of courses offered by the data science programs in the United States. Through topic modeling, 14 topics are identified from the current curricula of 56 data science programs. These…
Descriptors: Statistics Education, Definitions, Course Descriptions, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
König, Christoph; van de Schoot, Rens – Educational Review, 2018
The ability of a scientific discipline to build cumulative knowledge depends on its predominant method of data analysis. A steady accumulation of knowledge requires approaches which allow researchers to consider results from comparable prior research. Bayesian statistics is especially relevant for establishing a cumulative scientific discipline,…
Descriptors: Bayesian Statistics, Educational Research, Educational Practices, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Aridor, Keren; Ben-Zvi, Dani – Statistics Education Research Journal, 2017
This article examines how two processes--reasoning with statistical modelling of a real phenomenon and aggregate reasoning--can co-emerge. We focus in this case study on the emergent reasoning of two fifth graders (aged 10) involved in statistical data analysis, informal inference, and modelling activities using TinkerPlots™. We describe nine…
Descriptors: Foreign Countries, Models, Logical Thinking, Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Educational and Psychological Measurement, 2018
Cluster randomized trials involving participants nested within intact treatment and control groups are commonly performed in various educational, psychological, and biomedical studies. However, recruiting and retaining intact groups present various practical, financial, and logistical challenges to evaluators and often, cluster randomized trials…
Descriptors: Multivariate Analysis, Sampling, Statistical Inference, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Motz, Benjamin A.; Carvalho, Paulo F.; de Leeuw, Joshua R.; Goldstone, Robert L. – Journal of Learning Analytics, 2018
To identify the ways teachers and educational systems can improve learning, researchers need to make causal inferences. Analyses of existing datasets play an important role in detecting causal patterns, but conducting experiments also plays an indispensable role in this research. In this article, we advocate for experiments to be embedded in real…
Descriptors: Causal Models, Statistical Inference, Inferences, Educational Experiments
Yan, Yilin – ProQuest LLC, 2018
The development in information science has enabled an explosive growth of data, which attracts more and more researchers to engage in the field of big data analytics. Noticeably, in many real-world applications, large amounts of data are imbalanced data since the events of interests occur infrequently. Classification of imbalanced data is an…
Descriptors: Information Science, Information Retrieval, Multimedia Materials, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Green, Jennifer L.; Smith, Wendy M.; Kerby, April T.; Blankenship, Erin E.; Schmid, Kendra K.; Carlson, Mary Alice – Statistics Education Research Journal, 2018
In this study, we examined how in-service middle-level mathematics teachers used statistics in their own classroom research. Using an embedded single-case design, we analyzed a purposefully selected sample of nine teachers' classroom research papers, identifying several themes within each phase of the statistical problem solving process to…
Descriptors: Introductory Courses, Statistics, Inservice Teacher Education, Mathematics Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Katherine J.; Roberts, Gehan; Doyle, Lex W.; Anderson, Peter J.; Carlin, John B. – International Journal of Social Research Methodology, 2016
Multiple imputation (MI), a two-stage process whereby missing data are imputed multiple times and the resulting estimates of the parameter(s) of interest are combined across the completed datasets, is becoming increasingly popular for handling missing data. However, MI can result in biased inference if not carried out appropriately or if the…
Descriptors: Data Analysis, Statistical Inference, Computation, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7