NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kelli A. Bird; Benjamin L. Castleman; Yifeng Song – Journal of Policy Analysis and Management, 2025
Predictive analytics are increasingly pervasive in higher education. However, algorithmic bias has the potential to reinforce racial inequities in postsecondary success. We provide a comprehensive and translational investigation of algorithmic bias in two separate prediction models--one predicting course completion, the second predicting degree…
Descriptors: Algorithms, Technology Uses in Education, Bias, Racism
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yueqiao Jin; Vanessa Echeverria; Lixiang Yan; Linxuan Zhao; Riordan Alfredo; Yi-Shan Tsai; Dragan Gasevic; Roberto Martinez-Maldonado – Journal of Learning Analytics, 2024
Multimodal learning analytics (MMLA) integrates novel sensing technologies and artificial intelligence algorithms, providing opportunities to enhance student reflection during complex, collaborative learning experiences. Although recent advancements in MMLA have shown its capability to generate insights into diverse learning behaviours across…
Descriptors: Learning Analytics, Accountability, Ethics, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chenglong Wang – Turkish Online Journal of Educational Technology - TOJET, 2024
The rapid development of education informatization has accumulated a large amount of data for learning analytics, and adopting educational data mining to find new patterns of data, develop new algorithms and models, and apply known predictive models to the teaching system to improve learning is the challenge and vision of the education field in…
Descriptors: Decision Making, Prediction, Models, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Leung, Javier – Quarterly Review of Distance Education, 2022
This study aimed to visualize self-regulated learning (SRL) behaviors performed by users from an online teacher professional development platform called the EdHub Library using the pm4py algorithm in Python to parse event data during the first 30 days of the school year and the first 90 days of the COVID-19 pandemic in March 2020. Process mining…
Descriptors: Self Management, Learning Strategies, Electronic Learning, Faculty Development