NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Carrillo, Rafael E. – ProQuest LLC, 2012
Compressed sensing (CS) is an emerging signal acquisition framework that goes against the traditional Nyquist sampling paradigm. CS demonstrates that a sparse, or compressible, signal can be acquired using a low rate acquisition process. Since noise is always present in practical data acquisition systems, sensing and reconstruction methods are…
Descriptors: Mathematics, Computation, Sampling, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Kaplan, David; McCarty, Alyn Turner – Large-scale Assessments in Education, 2013
Background: In the context of international large scale assessments, it is often not feasible to implement a complete survey of all relevant populations. For example, the OECD Program for International Student Assessment surveys both students and schools, but does not obtain information from teachers. In contrast the OECD Teaching and Learning…
Descriptors: Measurement, International Assessment, Student Surveys, Teacher Surveys
Meyer, Donald – 1969
One of six summaries of workshop sessions (See TM 000 130), designed to strengthen the evaluation of costly programs and their effects, this handbook presents an analysis of both random and nonrandom sampling errors by application of the Bayesian model. This model attempts to formalize the process and procedures of inference from data through…
Descriptors: Bayesian Statistics, Data Collection, Error Patterns, Models
Peer reviewed Peer reviewed
Daniel, Wayne W.; And Others – Educational and Psychological Measurement, 1982
To test the use of Bayes's theorem to adjust for nonresponse bias, 600 hospitals were used in a simulated sample survey. On the basis of known information on five variables, Bayes's formula correctly predicted the status of 92 of the 100 "nonrespondents" relative to a sixth variable. (Author/BW)
Descriptors: Bayesian Statistics, Data Analysis, Data Collection, Hospitals