NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)12
Since 2006 (last 20 years)32
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 34 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Perrotta, Carlo; Williamson, Ben – Learning, Media and Technology, 2018
This paper argues that methods used for the classification and measurement of online education are not neutral and objective, but involved in the creation of the educational realities they claim to measure. In particular, the paper draws on material semiotics to examine cluster analysis as a 'performative device' that, to a significant extent,…
Descriptors: Educational Research, Data Collection, Data Analysis, Multivariate Analysis
Toure, Ibrahim – ProQuest LLC, 2017
Terrorism is a complex and evolving phenomenon. In the past few decades, we have witnessed an increase in the number of terrorist incidents in the world. The security and stability of many countries is threatened by terrorist groups. Perpetrators now use sophisticated weapons and the attacks are more and more lethal. Currently, terrorist incidents…
Descriptors: Data Analysis, Prediction, Terrorism, Risk
Peer reviewed Peer reviewed
Direct linkDirect link
Mühling, Andreas – Computer Science Education, 2016
Concept maps have a long history in educational settings as a tool for teaching, learning, and assessing. As an assessment tool, they are predominantly used to extract the structural configuration of learners' knowledge. This article presents an investigation of the knowledge structures of a large group of beginning CS students. The investigation…
Descriptors: Concept Mapping, Computer Science Education, Novices, Knowledge Level
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schneider, Bertrand; Blikstein, Paulo – Journal of Educational Data Mining, 2015
In this paper, we describe multimodal learning analytics (MMLA) techniques to analyze data collected around an interactive learning environment. In a previous study (Schneider & Blikstein, submitted), we designed and evaluated a Tangible User Interface (TUI) where dyads of students were asked to learn about the human hearing system by…
Descriptors: Educational Research, Data Collection, Data Analysis, Educational Environment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ferguson, Rebecca; Clow, Doug – Journal of Learning Analytics, 2015
Massive open online courses (MOOCs) are being used across the world to provide millions of learners with access to education. Many who begin these courses complete them successfully, or to their own satisfaction, but the high numbers who do not finish remain a subject of concern. In 2013, a team from Stanford University analyzed engagement…
Descriptors: Online Courses, Access to Education, Learner Engagement, Constructivism (Learning)
Aksut, Ann Ahu – ProQuest LLC, 2013
Numerous organizations collect and distribute non-aggregate personal data for a variety of different purposes, including demographic and public health research. In these situations, the data distributor is responsible with the protection of the anonymity and personal information of individuals. Microaggregation is one of the most commonly used…
Descriptors: Data Collection, Data Analysis, Multivariate Analysis, Disclosure
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gaševic, Dragan; Jovanovic, Jelena; Pardo, Abelardo; Dawson, Shane – Journal of Learning Analytics, 2017
The use of analytic methods for extracting learning strategies from trace data has attracted considerable attention in the literature. However, there is a paucity of research examining any association between learning strategies extracted from trace data and responses to well-established self-report instruments and performance scores. This paper…
Descriptors: Foreign Countries, Undergraduate Students, Engineering Education, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Gil, Einat; Gibbs, Alison L. – Statistics Education Research Journal, 2017
In this study, we follow students' modeling and covariational reasoning in the context of learning about big data. A three-week unit was designed to allow 12th grade students in a mathematics course to explore big and mid-size data using concepts such as trend and scatter to describe the relationships between variables in multivariate settings.…
Descriptors: Foreign Countries, Secondary School Students, Grade 12, Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Figueiredo, M.; Esteves, L.; Neves, J.; Vicente, H. – Chemistry Education Research and Practice, 2016
This study reports the use of data mining tools in order to examine the influence of the methodology used in chemistry lab classes, on the weight attributed by the students to the lab work on learning and own motivation. The answer frequency analysis was unable to discriminate the opinions expressed by the respondents according to the type of the…
Descriptors: Data Collection, Data Analysis, Chemistry, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Pampaka, Maria; Hutcheson, Graeme; Williams, Julian – International Journal of Research & Method in Education, 2016
Missing data is endemic in much educational research. However, practices such as step-wise regression common in the educational research literature have been shown to be dangerous when significant data are missing, and multiple imputation (MI) is generally recommended by statisticians. In this paper, we provide a review of these advances and their…
Descriptors: Data Analysis, Statistical Inference, Error of Measurement, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fu, Jianbin; Zapata, Diego; Mavronikolas, Elia – ETS Research Report Series, 2014
Simulation or game-based assessments produce outcome data and process data. In this article, some statistical models that can potentially be used to analyze data from simulation or game-based assessments are introduced. Specifically, cognitive diagnostic models that can be used to estimate latent skills from outcome data so as to scale these…
Descriptors: Simulation, Evaluation Methods, Games, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Irby, Stefan M.; Phu, Andy L.; Borda, Emily J.; Haskell, Todd R.; Steed, Nicole; Meyer, Zachary – Chemistry Education Research and Practice, 2016
There is much agreement among chemical education researchers that expertise in chemistry depends in part on the ability to coordinate understanding of phenomena on three levels: macroscopic (observable), sub-microscopic (atoms, molecules, and ions) and symbolic (chemical equations, graphs, etc.). We hypothesize this "level-coordination…
Descriptors: Chemistry, Formative Evaluation, Graduate Students, College Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Avella, John T.; Kebritchi, Mansureh; Nunn, Sandra G.; Kanai, Therese – Online Learning, 2016
Higher education for the 21st century continues to promote discoveries in the field through learning analytics (LA). The problem is that the rapid embrace of of LA diverts educators' attention from clearly identifying requirements and implications of using LA in higher education. LA is a promising emerging field, yet higher education stakeholders…
Descriptors: Higher Education, Literature Reviews, Data Collection, Data Analysis
Gibson, David; Clarke-Midura, Jody – International Association for Development of the Information Society, 2013
The rise of digital game and simulation-based learning applications has led to new approaches in educational measurement that take account of patterns in time, high resolution paths of action, and clusters of virtual performance artifacts. The new approaches, which depart from traditional statistical analyses, include data mining, machine…
Descriptors: Psychometrics, Educational Games, Educational Research, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Tempelaar, Dirk T.; Rienties, Bart; Nguyen, Quan – IEEE Transactions on Learning Technologies, 2017
Studies in the field of learning analytics (LA) have shown students' demographics and learning management system (LMS) data to be effective identifiers of "at risk" performance. However, insights generated by these predictive models may not be suitable for pedagogically informed interventions due to the inability to explain why students…
Descriptors: Student Behavior, Integrated Learning Systems, Personality, Educational Research
Previous Page | Next Page »
Pages: 1  |  2  |  3