NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Timothy Kluthe; Hannah Stabler; Amelia McNamara; Andreas Stefik – Computer Science Education, 2025
Background and Context: Data science and statistics are used across a broad spectrum of professions, experience levels and programming languages. The popular scientific computing languages, such as Matlab, Python and R, were organized without using empirical methods to show evidence for or against their design choices, resulting in them feeling…
Descriptors: Programming Languages, Data Science, Statistical Analysis, Vocabulary
Peer reviewed Peer reviewed
Direct linkDirect link
David Shilane; Nicole Di Crecchio; Nicole L. Lorenzetti – Teaching Statistics: An International Journal for Teachers, 2024
Educational curricula in data analysis are increasingly fundamental to statistics, data science, and a wide range of disciplines. The educational literature comparing coding syntaxes for instruction in data analysis recommends utilizing a simple syntax for introductory coursework. However, there is limited prior work to assess the pedagogical…
Descriptors: Programming, Data Science, Programming Languages, Coding
Peer reviewed Peer reviewed
Direct linkDirect link
Allison S. Theobold; Megan H. Wickstrom; Stacey A. Hancock – Journal of Statistics and Data Science Education, 2024
Despite the elevated importance of Data Science in Statistics, there exists limited research investigating how students learn the computing concepts and skills necessary for carrying out data science tasks. Computer Science educators have investigated how students debug their own code and how students reason through foreign code. While these…
Descriptors: Computer Science Education, Coding, Data Science, Statistics Education
Nischal Shrestha – ProQuest LLC, 2022
Data science programming presents many challenges for programmers entering the field. Roughly, data science programming can be broken up into several activities: data wrangling, analysis, modeling, or visualization. Data wrangling is an important first step that involves cleaning and shaping tabular data--or dataframes--into a form amenable for…
Descriptors: Data Science, Programming, Learning Strategies, Programming Languages