Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 3 |
Descriptor
Author
Chi, Min | 3 |
Barnes, Tiffany | 2 |
Lynch, Collin F. | 1 |
Mostafavi, Behrooz | 1 |
Price, Thomas | 1 |
Schmucker, Robin | 1 |
Shen, Shitian | 1 |
Shi, Yang | 1 |
Wang, Jianxun | 1 |
Zhou, Guojing | 1 |
Publication Type
Reports - Research | 3 |
Speeches/Meeting Papers | 2 |
Journal Articles | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Audience
Location
North Carolina | 2 |
Virginia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Shen, Shitian; Mostafavi, Behrooz; Barnes, Tiffany; Chi, Min – Journal of Educational Data Mining, 2018
An important goal in the design and development of Intelligent Tutoring Systems (ITSs) is to have a system that adaptively reacts to students' behavior in the short term and effectively improves their learning performance in the long term. Inducing effective pedagogical strategies that accomplish this goal is an essential challenge. To address…
Descriptors: Teaching Methods, Markov Processes, Decision Making, Rewards
Zhou, Guojing; Wang, Jianxun; Lynch, Collin F.; Chi, Min – International Educational Data Mining Society, 2017
In this study, we applied decision trees (DT) to extract a compact set of pedagogical decision-making rules from an original "full" set of 3,702 Reinforcement Learning (RL)- induced rules, referred to as the DT-RL rules and Full-RL rules respectively. We then evaluated the effectiveness of the two rule sets against a baseline Random…
Descriptors: Learning Theories, Teaching Methods, Decision Making, Intelligent Tutoring Systems