NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tutku Öztel; Fuat Balci – Cognitive Science, 2024
One of the most prominent social influences on human decision making is conformity, which is even more prominent when the perceptual information is ambiguous. The Bayes optimal solution to this problem entails weighting the relative reliability of cognitive information and perceptual signals in constructing the percept from self-sourced/endogenous…
Descriptors: Bayesian Statistics, Computation, Social Influences, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Marchant, Nicolás; Quillien, Tadeg; Chaigneau, Sergio E. – Cognitive Science, 2023
The causal view of categories assumes that categories are represented by features and their causal relations. To study the effect of causal knowledge on categorization, researchers have used Bayesian causal models. Within that framework, categorization may be viewed as dependent on a likelihood computation (i.e., the likelihood of an exemplar with…
Descriptors: Classification, Bayesian Statistics, Causal Models, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Xie, Belinda; Hayes, Brett – Cognitive Science, 2022
According to Bayesian models of judgment, testimony from independent informants has more evidential value than dependent testimony. Three experiments investigated learners' sensitivity to this distinction. Each experiment used a social version of the balls-and-urns task, in which participants judged which of two urns was the most likely source of…
Descriptors: Evidence, Decision Making, Task Analysis, Beliefs
Peer reviewed Peer reviewed
Direct linkDirect link
Zheng, Rong; Busemeyer, Jerome R.; Nosofsky, Robert M. – Cognitive Science, 2023
Though individual categorization or decision processes have been studied separately in many previous investigations, few studies have investigated how they interact by using a two-stage task of first categorizing and then deciding. To address this issue, we investigated a categorization-decision task in two experiments. In both, participants were…
Descriptors: Classification, Decision Making, Task Analysis, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Hsu, Anne S.; Horng, Andy; Griffiths, Thomas L.; Chater, Nick – Cognitive Science, 2017
Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event…
Descriptors: Statistical Inference, Bayesian Statistics, Evidence, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Dawn; Lu, Hongjing; Holyoak, Keith J. – Cognitive Science, 2017
A key property of relational representations is their "generativity": From partial descriptions of relations between entities, additional inferences can be drawn about other entities. A major theoretical challenge is to demonstrate how the capacity to make generative inferences could arise as a result of learning relations from…
Descriptors: Inferences, Abstract Reasoning, Learning Processes, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Gershman, Samuel J.; Pouncy, Hillard Thomas; Gweon, Hyowon – Cognitive Science, 2017
We routinely observe others' choices and use them to guide our own. Whose choices influence us more, and why? Prior work has focused on the effect of perceived similarity between two individuals (self and others), such as the degree of overlap in past choices or explicitly recognizable group affiliations. In the real world, however, any dyadic…
Descriptors: Social Influences, Social Cognition, Inferences, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Frosch, Caren A.; McCormack, Teresa; Lagnado, David A.; Burns, Patrick – Cognitive Science, 2012
The application of the formal framework of causal Bayesian Networks to children's causal learning provides the motivation to examine the link between judgments about the causal structure of a system, and the ability to make inferences about interventions on components of the system. Three experiments examined whether children are able to make…
Descriptors: Bayesian Statistics, Intervention, Inferences, Attribution Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Hawkins, Guy; Brown, Scott D.; Steyvers, Mark; Wagenmakers, Eric-Jan – Cognitive Science, 2012
For decisions between many alternatives, the benchmark result is Hick's Law: that response time increases log-linearly with the number of choice alternatives. Even when Hick's Law is observed for response times, divergent results have been observed for error rates--sometimes error rates increase with the number of choice alternatives, and…
Descriptors: Bayesian Statistics, Reaction Time, Context Effect, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Mozer, Michael C.; Pashler, Harold; Homaei, Hadjar – Cognitive Science, 2008
Griffiths and Tenenbaum (2006) asked individuals to make predictions about the duration or extent of everyday events (e.g., cake baking times), and reported that predictions were optimal, employing Bayesian inference based on veridical prior distributions. Although the predictions conformed strikingly to statistics of the world, they reflect…
Descriptors: Models, Individual Activities, Group Activities, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Michael D. – Cognitive Science, 2006
We consider human performance on an optimal stopping problem where people are presented with a list of numbers independently chosen from a uniform distribution. People are told how many numbers are in the list, and how they were chosen. People are then shown the numbers one at a time, and are instructed to choose the maximum, subject to the…
Descriptors: Bayesian Statistics, Inferences, Numbers, Cognitive Processes