NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jing Chen; Bei Fang; Hao Zhang; Xia Xue – Interactive Learning Environments, 2024
High dropout rate exists universally in massive open online courses (MOOCs) due to the separation of teachers and learners in space and time. Dropout prediction using the machine learning method is an extremely important prerequisite to identify potential at-risk learners to improve learning. It has attracted much attention and there have emerged…
Descriptors: MOOCs, Potential Dropouts, Prediction, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Marsela Thanasi-Boçe; Julian Hoxha – Education and Information Technologies, 2024
Entrepreneurship education has evolved to meet the demands of a dynamic business environment, necessitating innovative teaching methods to prepare entrepreneurs for market uncertainties. Large Language Models (LLMs) like the Generative Pre-trained Transformer 4 (GPT-4), recognized for their exceptional performance on public datasets, are examined…
Descriptors: Entrepreneurship, Business Administration Education, Technology Integration, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Lewis, Armanda; Stoyanovich, Julia – International Journal of Artificial Intelligence in Education, 2022
Although an increasing number of ethical data science and AI courses is available, with many focusing specifically on technology and computer ethics, pedagogical approaches employed in these courses rely exclusively on texts rather than on algorithmic development or data analysis. In this paper we recount a recent experience in developing and…
Descriptors: Statistics Education, Ethics, Artificial Intelligence, Compliance (Legal)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
He, Lingjun; Levine, Richard A.; Fan, Juanjuan; Beemer, Joshua; Stronach, Jeanne – Practical Assessment, Research & Evaluation, 2018
In institutional research, modern data mining approaches are seldom considered to address predictive analytics problems. The goal of this paper is to highlight the advantages of tree-based machine learning algorithms over classic (logistic) regression methods for data-informed decision making in higher education problems, and stress the success of…
Descriptors: Institutional Research, Regression (Statistics), Statistical Analysis, Data Analysis