NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
Assessments and Surveys
Peabody Picture Vocabulary…1
What Works Clearinghouse Rating
Showing 1 to 15 of 38 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Marchant, Nicolás; Quillien, Tadeg; Chaigneau, Sergio E. – Cognitive Science, 2023
The causal view of categories assumes that categories are represented by features and their causal relations. To study the effect of causal knowledge on categorization, researchers have used Bayesian causal models. Within that framework, categorization may be viewed as dependent on a likelihood computation (i.e., the likelihood of an exemplar with…
Descriptors: Classification, Bayesian Statistics, Causal Models, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Zheng, Rong; Busemeyer, Jerome R.; Nosofsky, Robert M. – Cognitive Science, 2023
Though individual categorization or decision processes have been studied separately in many previous investigations, few studies have investigated how they interact by using a two-stage task of first categorizing and then deciding. To address this issue, we investigated a categorization-decision task in two experiments. In both, participants were…
Descriptors: Classification, Decision Making, Task Analysis, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Alvin Christian; Brian Jacob; John D. Singleton – Grantee Submission, 2025
Recent controversies have highlighted the importance of local school district governance, but little empirical evidence exists evaluating the quality of district policy makers or policies. In this paper, we take a novel approach to assessing school district decision making. We posit a model of rational decision making under uncertainty that…
Descriptors: School Districts, Decision Making, In Person Learning, COVID-19
Peer reviewed Peer reviewed
Direct linkDirect link
Wagner, Richard K.; Moxley, Jerad; Schatschneider, Chris; Zirps, Fotena A. – Scientific Studies of Reading, 2023
Purpose: Bayesian-based models for diagnosis are common in medicine but have not been incorporated into identification models for dyslexia. The purpose of the present study was to evaluate Bayesian identification models that included a broader set of predictors and that capitalized on recent developments in modeling the prevalence of dyslexia.…
Descriptors: Bayesian Statistics, Identification, Dyslexia, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Ebert, Philip A. – Journal of Adventure Education and Outdoor Learning, 2019
In this article, I explore a Bayesian approach to avalanche decision-making. I motivate this perspective by highlighting a version of the base-rate fallacy and show that a similar pattern applies to decision-making in avalanche-terrain. I then draw out three theoretical lessons from adopting a Bayesian approach and discuss these lessons…
Descriptors: Bayesian Statistics, Decision Making, Outdoor Education, Natural Disasters
Peer reviewed Peer reviewed
Direct linkDirect link
Stone, Daniel F. – Journal of Economic Education, 2022
The author of this article describes a game-theory-based economics class on how people should, and do, form beliefs, communicate, and make decisions under uncertainty. Topics include Bayesian and non-Bayesian belief updating, the value of information, communication games, advertising, political media, and social learning. The only prerequisite is…
Descriptors: Undergraduate Students, Economics Education, Concept Formation, Beliefs
Peer reviewed Peer reviewed
Direct linkDirect link
Hsu, Anne S.; Horng, Andy; Griffiths, Thomas L.; Chater, Nick – Cognitive Science, 2017
Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event…
Descriptors: Statistical Inference, Bayesian Statistics, Evidence, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Yonggang; Zheng, Qiujie; Quinn, Daniel – Journal of Statistics and Data Science Education, 2023
We present an instructional approach to teaching causal inference using Bayesian networks and "do"-Calculus, which requires less prerequisite knowledge of statistics than existing approaches and can be consistently implemented in beginner to advanced levels courses. Moreover, this approach aims to address the central question in causal…
Descriptors: Bayesian Statistics, Learning Motivation, Calculus, Advanced Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Longford, Nicholas Tibor – Journal of Educational and Behavioral Statistics, 2016
We address the problem of selecting the best of a set of units based on a criterion variable, when its value is recorded for every unit subject to estimation, measurement, or another source of error. The solution is constructed in a decision-theoretical framework, incorporating the consequences (ramifications) of the various kinds of error that…
Descriptors: Decision Making, Classification, Guidelines, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Oh, Hanna; Beck, Jeffrey M.; Zhu, Pingping; Sommer, Marc A.; Ferrari, Silvia; Egner, Tobias – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
Much of our real-life decision making is bounded by uncertain information, limitations in cognitive resources, and a lack of time to allocate to the decision process. It is thought that humans overcome these limitations through "satisficing," fast but "good-enough" heuristic decision making that prioritizes some sources of…
Descriptors: Decision Making, Cues, Cognitive Processes, Time
Peer reviewed Peer reviewed
Direct linkDirect link
Hooshyar, Danial; Ahmad, Rodina Binti; Yousefi, Moslem; Fathi, Moein; Horng, Shi-Jinn; Lim, Heuiseok – Innovations in Education and Teaching International, 2018
In learning systems and environment research, intelligent tutoring and personalisation are considered the two most important factors. An Intelligent Tutoring System can serve as an effective tool to improve problem-solving skills by simulating a human tutor's actions in implementing one-to-one adaptive and personalised teaching. Thus, in this…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Skill Development, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Wu, Charley M.; Meder, Björn; Filimon, Flavia; Nelson, Jonathan D. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2017
While the influence of presentation formats have been widely studied in Bayesian reasoning tasks, we present the first systematic investigation of how presentation formats influence information search decisions. Four experiments were conducted across different probabilistic environments, where subjects (N = 2,858) chose between 2 possible search…
Descriptors: Questioning Techniques, Information Seeking, Search Strategies, Search Engines
Peer reviewed Peer reviewed
Direct linkDirect link
Jenny, Mirjam A.; Rieskamp, Jörg; Nilsson, Håkan – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2014
Judging whether multiple events will co-occur is an important aspect of everyday decision making. The underlying probabilities of occurrence are usually unknown and have to be inferred from experience. Using a rigorous, quantitative model comparison, we investigate how people judge the conjunctive probabilities of multiple events to co-occur. In 2…
Descriptors: Experimental Psychology, Decision Making, Probability, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Bramley, Neil R.; Lagnado, David A.; Speekenbrink, Maarten – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015
Interacting with a system is key to uncovering its causal structure. A computational framework for interventional causal learning has been developed over the last decade, but how real causal learners might achieve or approximate the computations entailed by this framework is still poorly understood. Here we describe an interactive computer task in…
Descriptors: Intervention, Memory, Cognitive Processes, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Solomon, Benjamin G.; Forsberg, Ole J. – School Psychology Quarterly, 2017
Bayesian techniques have become increasingly present in the social sciences, fueled by advances in computer speed and the development of user-friendly software. In this paper, we forward the use of Bayesian Asymmetric Regression (BAR) to monitor intervention responsiveness when using Curriculum-Based Measurement (CBM) to assess oral reading…
Descriptors: Bayesian Statistics, Regression (Statistics), Least Squares Statistics, Evaluation Methods
Previous Page | Next Page »
Pages: 1  |  2  |  3