Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 13 |
Descriptor
Decision Making | 14 |
Markov Processes | 14 |
Models | 13 |
Artificial Intelligence | 4 |
Bayesian Statistics | 4 |
Evaluation Methods | 4 |
Intelligent Tutoring Systems | 4 |
Learning Processes | 4 |
Teaching Methods | 4 |
Computation | 3 |
Monte Carlo Methods | 3 |
More ▼ |
Source
Author
Almond, Russell G. | 1 |
Ansari, Asim | 1 |
Bargagliotti, Anna | 1 |
Barnes, Tiffany | 1 |
Barnes, Tiffany, Ed. | 1 |
Bei Fang | 1 |
Brunskill, Emma | 1 |
Chang, Hua-hua | 1 |
Chi, Min, Ed. | 1 |
Clement, Benjamin | 1 |
Croy, Marvin | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Reports - Research | 8 |
Reports - Evaluative | 3 |
Speeches/Meeting Papers | 3 |
Collected Works - Proceedings | 1 |
Dissertations/Theses -… | 1 |
Reports - Descriptive | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 3 |
Postsecondary Education | 2 |
Secondary Education | 2 |
Elementary Secondary Education | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jing Chen; Bei Fang; Hao Zhang; Xia Xue – Interactive Learning Environments, 2024
High dropout rate exists universally in massive open online courses (MOOCs) due to the separation of teachers and learners in space and time. Dropout prediction using the machine learning method is an extremely important prerequisite to identify potential at-risk learners to improve learning. It has attracted much attention and there have emerged…
Descriptors: MOOCs, Potential Dropouts, Prediction, Artificial Intelligence
Li, Xiao; Xu, Hanchen; Zhang, Jinming; Chang, Hua-hua – Journal of Educational and Behavioral Statistics, 2023
The adaptive learning problem concerns how to create an individualized learning plan (also referred to as a learning policy) that chooses the most appropriate learning materials based on a learner's latent traits. In this article, we study an important yet less-addressed adaptive learning problem--one that assumes continuous latent traits.…
Descriptors: Learning Processes, Models, Algorithms, Individualized Instruction
Polyzou, Agoritsa; Nikolakopoulos, Athanasios N.; Karypis, George – International Educational Data Mining Society, 2019
Course selection is a crucial and challenging problem that students have to face while navigating through an undergraduate degree program. The decisions they make shape their future in ways that they cannot conceive in advance. Available departmental sample degree plans are not personalized for each student, and personal discussion time with an…
Descriptors: Markov Processes, Course Selection (Students), Undergraduate Students, Decision Making
Rafferty, Anna N.; Brunskill, Emma; Griffiths, Thomas L.; Shafto, Patrick – Cognitive Science, 2016
Human and automated tutors attempt to choose pedagogical activities that will maximize student learning, informed by their estimates of the student's current knowledge. There has been substantial research on tracking and modeling student learning, but significantly less attention on how to plan teaching actions and how the assumed student model…
Descriptors: Markov Processes, Educational Planning, Decision Making, Models
Gould, Robert; Bargagliotti, Anna; Johnson, Terri – Statistics Education Research Journal, 2017
Participatory sensing is a data collection method in which communities of people collect and share data to investigate large-scale processes. These data have many features often associated with the big data paradigm: they are rich and multivariate, include non-numeric data, and are collected as determined by an algorithm rather than by traditional…
Descriptors: Secondary School Teachers, Logical Thinking, Data Collection, Data
Clement, Benjamin; Oudeyer, Pierre-Yves; Lopes, Manuel – International Educational Data Mining Society, 2016
Online planning of good teaching sequences has the potential to provide a truly personalized teaching experience with a huge impact on the motivation and learning of students. In this work we compare two main approaches to achieve such a goal, POMDPs that can find an optimal long-term path, and Multi-armed bandits that optimize policies locally…
Descriptors: Intelligent Tutoring Systems, Markov Processes, Models, Teaching Methods
Feng, Junchen – ProQuest LLC, 2017
The future of education is human expertise and artificial intelligence working in conjunction, a revolution that will change the education as we know it. The Intelligent Tutoring System is a key component of this future. A quantitative measurement of efficacies of practice to heterogeneous learners is the cornerstone of building an effective…
Descriptors: Intelligent Tutoring Systems, Learning Processes, Bayesian Statistics, Models
Rouder, Jeffrey N.; Yue, Yu; Speckman, Paul L.; Pratte, Michael S.; Province, Jordan M. – Psychological Review, 2010
A dominant theme in modeling human perceptual judgments is that sensory neural activity is summed or integrated until a critical bound is reached. Such models predict that, in general, the shape of response time distributions change across conditions, although in practice, this shape change may be subtle. An alternative view is that response time…
Descriptors: Reaction Time, Decision Making, Models, Statistical Analysis
Stamper, John; Barnes, Tiffany; Croy, Marvin – International Journal of Artificial Intelligence in Education, 2011
The Hint Factory is an implementation of our novel method to automatically generate hints using past student data for a logic tutor. One disadvantage of the Hint Factory is the time needed to gather enough data on new problems in order to provide hints. In this paper we describe the use of expert sample solutions to "seed" the hint generation…
Descriptors: Cues, Prompting, Learning Strategies, Teaching Methods
Stankiewicz, Brian J.; Legge, Gordon E.; Mansfield, J. Stephen; Schlicht, Erik J. – Journal of Experimental Psychology: Human Perception and Performance, 2006
The authors describe 3 human spatial navigation experiments that investigate how limitations of perception, memory, uncertainty, and decision strategy affect human spatial navigation performance. To better understand the effect of these variables on human navigation performance, the authors developed an ideal-navigator model for indoor navigation…
Descriptors: Spatial Ability, Visual Perception, Memory, Models
Ansari, Asim; Iyengar, Raghuram – Psychometrika, 2006
We develop semiparametric Bayesian Thurstonian models for analyzing repeated choice decisions involving multinomial, multivariate binary or multivariate ordinal data. Our modeling framework has multiple components that together yield considerable flexibility in modeling preference utilities, cross-sectional heterogeneity and parameter-driven…
Descriptors: Markov Processes, Monte Carlo Methods, Computation, Bayesian Statistics
Almond, Russell G. – ETS Research Report Series, 2007
Over the course of instruction, instructors generally collect a great deal of information about each student. Integrating that information intelligently requires models for how a student's proficiency changes over time. Armed with such models, instructors can "filter" the data--more accurately estimate the student's current proficiency…
Descriptors: Markov Processes, Decision Making, Student Evaluation, Learning Processes
Barnes, Tiffany, Ed.; Chi, Min, Ed.; Feng, Mingyu, Ed. – International Educational Data Mining Society, 2016
The 9th International Conference on Educational Data Mining (EDM 2016) is held under the auspices of the International Educational Data Mining Society at the Sheraton Raleigh Hotel, in downtown Raleigh, North Carolina, in the USA. The conference, held June 29-July 2, 2016, follows the eight previous editions (Madrid 2015, London 2014, Memphis…
Descriptors: Data Analysis, Evidence Based Practice, Inquiry, Science Instruction
Kelly, Wayne – 1997
This paper describes a spreadsheet-based faculty flow model developed and implemented at the University of Calgary (Canada) to analyze faculty retirement, turnover, and salary issues. The study examined whether, given expected faculty turnover, the current salary increment system was sustainable in a stable or declining funding environment, and…
Descriptors: Academic Rank (Professional), College Faculty, Computer Software, Decision Making