NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Showing 1 to 15 of 46 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaona Xia; Tianjiao Wang – Asia-Pacific Education Researcher, 2024
The artificial intelligence methods might be applied to see through the education problems, and make effective prediction and decision. The transformation from data to decision are inseparable from the learning analytics. In order to solve the dynamic multi-objective decision problems, a decision learning algorithm is designed to analyze the…
Descriptors: Learning, Behavior, Achievement, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Amelia Parnell – Journal of Postsecondary Student Success, 2022
Data-informed decision-making is no longer an optional or occasional practice, as higher education professionals now routinely respond to calls for accountability by providing data to show how their work impacts students. Institutions are operating with a culture that, at a minimum, includes the use of descriptive and diagnostic analyses to assess…
Descriptors: Student Needs, Data Use, Prediction, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Paassen, Benjamin; McBroom, Jessica; Jeffries, Bryn; Koprinska, Irena; Yacef, Kalina – Journal of Educational Data Mining, 2021
Educational data mining involves the application of data mining techniques to student activity. However, in the context of computer programming, many data mining techniques can not be applied because they require vector-shaped input, whereas computer programs have the form of syntax trees. In this paper, we present ast2vec, a neural network that…
Descriptors: Data Analysis, Programming Languages, Networks, Novices
Peer reviewed Peer reviewed
Direct linkDirect link
Larkan-Skinner, Kara; Shedd, Jessica M. – New Directions for Institutional Research, 2020
As institutions seek to shift into more advanced analytics and data-based decision-support, many institutional research offices face the challenge of meeting the office's current demands while taking on more intricate and specialized work to support decision-making. Given the great need organizations have for information that supports real-time…
Descriptors: Data, Data Analysis, Prediction, Data Use
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Parapadakis, Dimitris – London Review of Education, 2020
The successes of using artificial intelligence (AI) in analysing large-scale data at a low cost make it an attractive tool for analysing student data to discover models that can inform decision makers in education. This article looks at the case of decision making from models of student satisfaction, using research on ten years (2008-17) of…
Descriptors: Artificial Intelligence, Prediction, Student Needs, Needs Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Elsenbroich, Corinna; Badham, Jennifer – International Journal of Social Research Methodology, 2023
Agent-based models combine data and theory during both development and use of the model. As models have become increasingly data driven, it is easy to start thinking of agent-based modelling as an empirical method, akin to statistical modelling, and reduce the role of theory. We argue that both types of information are important where the past is…
Descriptors: Models, Futures (of Society), Research Methodology, Systems Approach
Peer reviewed Peer reviewed
Direct linkDirect link
Singer, Gonen; Golan, Maya; Rabin, Neta; Kleper, Dvir – European Journal of Engineering Education, 2020
The purpose of this study is to evaluate how learning disabilities (LDs), in combination with accommodations, affect the performance of a decision-tree to predict the stability of academic behaviour of undergraduate engineering students. Additionally, this study presents several examples to illustrate how a college could use the resultant model to…
Descriptors: Learning Disabilities, Academic Accommodations (Disabilities), Undergraduate Students, Engineering Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bosch, Nigel – Journal of Educational Data Mining, 2021
Automatic machine learning (AutoML) methods automate the time-consuming, feature-engineering process so that researchers produce accurate student models more quickly and easily. In this paper, we compare two AutoML feature engineering methods in the context of the National Assessment of Educational Progress (NAEP) data mining competition. The…
Descriptors: Accuracy, Learning Analytics, Models, National Competency Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Raj, Gaurav; Mahajan, Manish; Singh, Dheerendra – International Journal of Web-Based Learning and Teaching Technologies, 2020
In secure web application development, the role of web services will not continue if it is not trustworthy. Retaining customers with applications is one of the major challenges if the services are not reliable and trustworthy. This article proposes a trust evaluation and decision model where the authors have defined indirect attribute, trust,…
Descriptors: Trust (Psychology), Models, Decision Making, Computer Software
Peer reviewed Peer reviewed
PDF on ERIC Download full text
He, Lingjun; Levine, Richard A.; Fan, Juanjuan; Beemer, Joshua; Stronach, Jeanne – Practical Assessment, Research & Evaluation, 2018
In institutional research, modern data mining approaches are seldom considered to address predictive analytics problems. The goal of this paper is to highlight the advantages of tree-based machine learning algorithms over classic (logistic) regression methods for data-informed decision making in higher education problems, and stress the success of…
Descriptors: Institutional Research, Regression (Statistics), Statistical Analysis, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Khosravi, Hassan; Shabaninejad, Shiva; Bakharia, Aneesha; Sadiq, Shazia; Indulska, Marta; Gasevic, Dragan – Journal of Learning Analytics, 2021
Learning analytics dashboards commonly visualize data about students with the aim of helping students and educators understand and make informed decisions about the learning process. To assist with making sense of complex and multidimensional data, many learning analytics systems and dashboards have relied strongly on AI algorithms based on…
Descriptors: Learning Analytics, Visual Aids, Artificial Intelligence, Information Retrieval
Peer reviewed Peer reviewed
Direct linkDirect link
Mimis, Mohamed; El Hajji, Mohamed; Es-saady, Youssef; Oueld Guejdi, Abdellah; Douzi, Hassan; Mammass, Driss – Education and Information Technologies, 2019
The educational recommendation system to provide support for academic guidance and adaptive learning has always been an important issue of research for smart education. A bad guidance can give rise to difficulties in further studies and can be extended to school dropout. This paper explores the potential of Educational Data Mining for academic…
Descriptors: Educational Counseling, Guidance, Educational Research, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Kemper, Lorenz; Vorhoff, Gerrit; Wigger, Berthold U. – European Journal of Higher Education, 2020
We perform two approaches of machine learning, logistic regressions and decision trees, to predict student dropout at the Karlsruhe Institute of Technology (KIT). The models are computed on the basis of examination data, i.e. data available at all universities without the need of specific collection. Therefore, we propose a methodical approach…
Descriptors: Foreign Countries, Predictor Variables, Potential Dropouts, School Holding Power
Peer reviewed Peer reviewed
Direct linkDirect link
Gulson, Kalervo N.; Webb, P. Taylor – Research in Education, 2017
Contemporary education policy involves the integration of novel forms of data and the creation of new data platforms, in addition to the infusion of business principles into school governance networks, and intensification of socio-technical relations. In this paper, we examine how "computational rationality" may be understood as…
Descriptors: Ethics, Educational Policy, Prediction, Artificial Intelligence
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4