NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 64 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona – Interactive Learning Environments, 2023
The research of multi-category learning behaviors is a hot issue in interactive learning environment, and there are many challenges in data statistics and relationship modeling. We select the massive learning behaviors data of multiple periods and courses and study the decision application of regression analysis. First, based on the definition of…
Descriptors: Learning Analytics, Decision Making, Regression (Statistics), Bayesian Statistics
Abdullah Mana Alfarwan – ProQuest LLC, 2024
This dissertation examined classification outcome differences among four popular individual supervised machine learning (ISML) models (logistic regression, decision tree, support vector machine, and multilayer perceptron) when predicting minor class membership within imbalanced datasets. The study context and the theoretical population sampled…
Descriptors: Regression (Statistics), Decision Making, Prediction, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Silva, Hernán A.; Quezada, Luis E.; Oddershede, A. M.; Palominos, Pedro I.; O'Brien, Christopher – Journal of College Student Retention: Research, Theory & Practice, 2023
The objective of this paper is the design of a predictive model of students' desertion in Educational Institutions based on the Analytic Hierarchy Process (AHP). The proposed model is based on a weighted sum of individual probabilities of desertion associated with various factors (explanatory variables) by experts in the combined use of the AHP…
Descriptors: Foreign Countries, Prediction, Models, Probability
Nadav Mordechai Kunievsky – ProQuest LLC, 2024
All of our choices and all that sets us apart are governed by what we can do, what we want to do, and what we know. This dissertation aims to quantify two of these channels to better understand why we differ. The first two chapters focus on what we know and how it shapes societal gaps. The first chapter attacks the question of how much of the gap…
Descriptors: Labor Economics, Decision Making, Enrollment Trends, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Eunsook Kim; Nathaniel von der Embse – Journal of Experimental Education, 2024
Using data from multiple informants has long been considered best practice in education. However, multiple informants often disagree on similar constructs, complicating decision-making. Polynomial regression and response-surface analysis (PRA) is often used to test the congruence effect between multiple informants on an outcome. However, PRA…
Descriptors: Congruence (Psychology), Information Sources, Best Practices, Regression (Statistics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Yingbin; Pinto, Juan D.; Fan, Aysa Xuemo; Paquette, Luc – Journal of Educational Data Mining, 2023
The second CSEDM data challenge aimed at finding innovative methods to use students' programming traces to model their learning. The main challenge of this task is how to decide which past problems are relevant for predicting performance on a future problem. This paper proposes a set of weighting schemes to address this challenge. Specifically,…
Descriptors: Problem Solving, Introductory Courses, Computer Science Education, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Adam Sales – Society for Research on Educational Effectiveness, 2021
Education researchers frequently have to choose between statistical models for their data, and in many cases the candidate models or parameters can be listed in a sequence, m=1,...,M, from less preferable choices to more. For instance, in choosing a bandwidth for regression discontinuity designs, researchers would favor the largest possible…
Descriptors: Educational Research, Statistical Analysis, Research Design, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Selvi, Hüseyin; Alici, Devrim; Uzun, Nezaket Bilge – Asian Journal of Education and Training, 2020
This study aims to comparatively examine the resultant findings by testing the measurement invariance with structural equation modeling in cases where the missing data is handled using the expectation-maximization (EM), regression imputation, and mean substitution methods in the complete data matrix and the 5% missing data matrix that is randomly…
Descriptors: Error of Measurement, Structural Equation Models, Attitude Measures, Student Attitudes
Wang, Lu – ProQuest LLC, 2017
This study expands understanding of Chinese international undergraduate students' stay inclinations in the United States. It analyzed a sample of 247 Chinese undergraduate students from a public Midwestern research university during Spring 2017. This study compared the differences in stay inclinations between Chinese undergraduate students who…
Descriptors: Undergraduate Students, Research Universities, Foreign Students, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Kemper, Lorenz; Vorhoff, Gerrit; Wigger, Berthold U. – European Journal of Higher Education, 2020
We perform two approaches of machine learning, logistic regressions and decision trees, to predict student dropout at the Karlsruhe Institute of Technology (KIT). The models are computed on the basis of examination data, i.e. data available at all universities without the need of specific collection. Therefore, we propose a methodical approach…
Descriptors: Foreign Countries, Predictor Variables, Potential Dropouts, School Holding Power
Peer reviewed Peer reviewed
Direct linkDirect link
Bhatia, Sudeep – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2017
Preferences are influenced by the presence or absence of salient choice options, known as reference points. This behavioral tendency is traditionally attributed to the loss aversion and diminishing sensitivity assumptions of prospect theory. In contrast, some psychological research suggests that reference dependence is caused by attentional biases…
Descriptors: Comparative Analysis, Learning Theories, Preferences, Attention
Feng, Junchen – ProQuest LLC, 2017
The future of education is human expertise and artificial intelligence working in conjunction, a revolution that will change the education as we know it. The Intelligent Tutoring System is a key component of this future. A quantitative measurement of efficacies of practice to heterogeneous learners is the cornerstone of building an effective…
Descriptors: Intelligent Tutoring Systems, Learning Processes, Bayesian Statistics, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Gabriel, Florence; Signolet, Jason; Westwell, Martin – International Journal of Research & Method in Education, 2018
Mathematics competency is fast becoming an essential requirement in ever greater parts of day-to-day work and life. Thus, creating strategies for improving mathematics learning in students is a major goal of education research. However, doing so requires an ability to look at many aspects of mathematics learning, such as demographics and…
Descriptors: Artificial Intelligence, Mathematics Instruction, Numeracy, Models
Easttorp, Karl – ProQuest LLC, 2017
The cost of a college education continues to trend upward and state funding for higher education has trended downward, shifting more of the financial burden to students through student loans. About half of all 2010-2011 financial aid originated from student loans, and total federal student loan borrowing rose 319% between 1990 and 2010.…
Descriptors: Correlation, Student Financial Aid, Debt (Financial), Two Year College Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maaliw, Renato R. III; Ballera, Melvin A. – International Association for Development of the Information Society, 2017
The usage of data mining has dramatically increased over the past few years and the education sector is leveraging this field in order to analyze and gain intuitive knowledge in terms of the vast accumulated data within its confines. The primary objective of this study is to compare the results of different classification techniques such as Naïve…
Descriptors: Classification, Cognitive Style, Electronic Learning, Decision Making
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5