NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wagner, Kerstin; Merceron, Agathe; Sauer, Petra; Pinkwart, Niels – International Educational Data Mining Society, 2023
In this paper, we present an extended evaluation of a course recommender system designed to support students who struggle in the first semesters of their studies and are at risk of dropping out. The system, which was developed in earlier work using a student-centered design and which is based on the explainable k-nearest neighbor algorithm,…
Descriptors: College Freshmen, At Risk Students, Dropouts, Dropout Programs
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Christie, S. Thomas; Jarratt, Daniel C.; Olson, Lukas A.; Taijala, Taavi T. – International Educational Data Mining Society, 2019
Schools across the United States suffer from low on-time graduation rates. Targeted interventions help at-risk students meet graduation requirements in a timely manner, but identifying these students takes time and practice, as warning signs are often context-specific and reflected in a combination of attendance, social, and academic signals…
Descriptors: Dropout Prevention, At Risk Students, Artificial Intelligence, Decision Support Systems
Luo, Ling; Koprinska, Irena; Liu, Wei – International Educational Data Mining Society, 2015
In this paper we consider discrimination-aware classification of educational data. Mining and using rules that distinguish groups of students based on sensitive attributes such as gender and nationality may lead to discrimination. It is desirable to keep the sensitive attributes during the training of a classifier to avoid information loss but…
Descriptors: Classification, Data Analysis, Case Studies, Prediction