NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 149 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Bingxing Wang; Qi Wang; Yanwei Zhang; Yongcai Zhang; Yuanchao Li; Donglin Zhao – Journal of Chemical Education, 2023
Interfacial, or surface tension, is a significant topic in chemical education. This paper describes the directional motion of gallium-based liquid metal drops, resulting from a difference of interfacial tension across the drop. This demonstration can engage students in discovering the underlying chemical principles. A mechanism for the drop's…
Descriptors: Chemistry, Science Education, Demonstrations (Educational), Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Vitthal T. Borkar – Journal of Chemical Education, 2023
The simple demonstration presented, herein, involves the combustion of acetylene liberated from the rapid hydrolysis of 0.50 g of calcium carbide. The unsaturated hydrocarbon formed burns with a yellow sooty flame in air. This acetylene-air flame being visually attractive is often misused by those attempting to showcase their illusory magical…
Descriptors: Science Instruction, Demonstrations (Educational), Chemistry, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
McCaughin, Patrick; Ford, Lyle – Physics Teacher, 2021
Since its debut in Elihu Thomson's 1886 article "Novel Phenomena of Alternating Currents," the Thomson jumping ring apparatus has been a popular and captivating demonstration of magnetic induction. The components are quite simple. There is a solenoid, an iron core, and a ring. The demonstration usually begins with the professor saying…
Descriptors: Physics, Magnets, Scientific Concepts, Demonstrations (Educational)
Peer reviewed Peer reviewed
Direct linkDirect link
Kao, W. F. – Physics Education, 2021
Fermat's principle states that a light ray refracted across different media will traverse the fastest path as the physics for Snell's law. A geometric proof of Fermat's principle will be demonstrated as an intuitive approach to learn high school geometry and physical optics. It will be proved explicitly by showing that all alternative paths need…
Descriptors: Physics, Scientific Principles, Optics, Geometry
Peer reviewed Peer reviewed
Direct linkDirect link
Gauld, Colin; Cross, Rod – Physics Education, 2021
Newton's cradle is often discussed in science classrooms as a clear example of the laws of conservation of momentum and energy although it has been shown that this use is somewhat misleading. Approaches to understanding the behaviour of this apparatus are often over-simplified and deficient or over-complex and with little impact among teachers. In…
Descriptors: Scientific Principles, Conservation (Concept), Mechanics (Physics), Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Cross, Rod; Gauld, Colin – Physics Education, 2021
Newton's cradle is a well-known physics toy that is commonly used by teachers to demonstrate conservation laws in mechanics. It can also be used to investigate the physics of colliding objects, by recording motion of the balls on video film. Various experiments are described using 3-ball and 5-ball cradles, showing how different types of collision…
Descriptors: Scientific Principles, Conservation (Concept), Mechanics (Physics), Demonstrations (Educational)
Peer reviewed Peer reviewed
Direct linkDirect link
Uddin, Zaheer; Zaheer, Muhammad Hani – Physics Teacher, 2019
In this paper, we present a demonstration of Ohm's law on a spreadsheet. Students can perform an experiment of Ohm's law like they perform in laboratories. The only difference is that the apparatus is virtual. The students record readings of current through the circuit and potential difference across a resistor. A graph is drawn between I and V to…
Descriptors: Scientific Principles, Spreadsheets, Science Experiments, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Behroozi, F. – Physics Teacher, 2018
With the wide availability of strong neodymium magnets, the slow and stately fall of a magnet through a conducting pipe has become a favorite classroom demo for teaching electromagnetic induction, Newton's third law, and Lenz's law. Since Lenz's law is conceptually difficult for some students, several authors have used this demo to explore in…
Descriptors: Magnets, Science Instruction, Scientific Principles, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
de Almeida, Pamella Aline; Onisaki, Hadassa; de Almeida, Juarez Trindade; Costa, Lúcio Campos; Brockington, Guilherme – Physics Education, 2020
Principles of conservation are essential to the physical understanding of the universe. When thinking about its teaching, especially aimed at basic education, experimental activities can be great allies for its understanding. In this article, we present a demonstrative model using a fidget spinner arranged in a structure constructed using 3D…
Descriptors: Science Instruction, Scientific Principles, Motion, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Berls, Rob; Ruiz, Michael J. – Physics Education, 2018
The classic demonstration illustrating Lenz's law by dropping a magnet through a copper pipe is presented using household aluminum foil right out of the box. Then comes the surprise. The teacher presents an aluminum foil cylinder with a missing lengthwise slice (cut before class). Will the demonstration still work? Students are amazed at the…
Descriptors: Physics, Scientific Concepts, Scientific Principles, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Reeder, S.; Wilkie, K.; Kelly, T. J.; Boullard, J. S. – Physics Education, 2019
In this article, we outline a demonstration that is relatively simple to perform but whose results require a quite subtle interpretation of Faraday's Law. When a very small magnet is dropped through a coil it can tumble as it falls leading to 'spikes' in the measured emf signal. The experiment, and demonstration, can be used in an introductory…
Descriptors: Physics, Magnets, Science Experiments, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Kodejška, Cenek – Physics Education, 2018
This work focuses on the experimental demonstration of the hydrostatic paradox using simple tools in the form of plastic bottles and plastic syringes with a thread. For the evaluation of the results obtained the data logger Lab Quest Vernier was used. The construction of the device is presented in the first part of this paper. The second part…
Descriptors: Plastics, Science Experiments, Science Equipment, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Williams, David; Banks, Octavia; Eichmeyer, Livia; Wu, Cherrin – Physics Education, 2018
Recent GCSE and IGCSE specifications include reference to both permanent and induced magnetism, giving the opportunity for novel classroom demonstrations based on ferromagnetism and paramagnetism, and the transition between these phases. Ferromagnetic materials lose their magnetism if raised above their Curie Temperature, a specific temperature…
Descriptors: Classroom Techniques, Climate, Demonstrations (Educational), Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
Ivanov, Dragia; Nikolov, Stefan – Physics Education, 2016
In this paper we present a novel way to demonstrate the Hall effect and study some of its main properties using basic materials and easily obtainable measuring devices.
Descriptors: Physics, Scientific Concepts, Scientific Principles, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Velentzas, Athanasios; Halkia, Krystallia – International Journal of Science Education, 2018
In this study, an analysis of the structure of scientific explanations included in physics textbooks of upper secondary schools in Greece was completed. In scientific explanations for specific phenomena found in the sample textbooks, the "explanandum" is a logical consequence of the "explanans," which in all cases include at…
Descriptors: Secondary School Science, Physics, Scientific Principles, Scientific Concepts
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10