NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)0
Since 2006 (last 20 years)6
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mateo Sanguino, T. J.; Serrano Lopez, C.; Marquez Hernandez, F. A. – IEEE Transactions on Education, 2013
A new educational simulation tool designed for the generic study of wireless networks, the Wireless Fidelity Simulator (WiFiSim), is presented in this paper. The goal of this work was to create and implement a didactic tool to improve the teaching and learning of computer networks by means of two complementary strategies: simulating the behavior…
Descriptors: Computer Simulation, Telecommunications, Information Networks, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Jennifer; Werner-Avidon, Maia; Newton, Lisa; Randol, Scott; Smith, Brooke; Walker, Gretchen – Journal of Pre-College Engineering Education Research, 2013
The Lawrence Hall of Science, a science center, seeks to replicate real-world engineering at the "Ingenuity in Action" exhibit, which consists of three open-ended challenges. These problems encourage children to engage in engineering design processes and problem-solving techniques through tinkering. We observed and interviewed 112…
Descriptors: Engineering Technology, Engineering Education, Design, Exhibits
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bennie, Fiona; Corbett, Charlotte; Palo, Angela – Odyssey: New Directions in Deaf Education, 2015
This article describes an after-school program at the Horace Mann School for the Deaf (HMS), the oldest public day school for deaf students in the United States, where almost half of the student body imagined and created bridge and robotic machines. The Deaf Robotics Engineering and Math Team, or the DREAM Team club, included HMS students in…
Descriptors: After School Programs, Robotics, Deafness, Program Descriptions
Carr, Ronald L.; Strobel, Johannes – National Center for Engineering and Technology Education, 2011
Engineering is being currently taught in the full spectrum of the P-12 system, with an emphasis on design-oriented teaching (Brophy, Klein, Portsmore, & Rogers, 2008). Due to only a small amount of research on the learning of engineering design in elementary and middle school settings, the community of practice lacks the necessary knowledge of the…
Descriptors: Engineering, Educational Research, STEM Education, Integrated Curriculum
Peer reviewed Peer reviewed
Direct linkDirect link
McSpadden, Moira; Kelley, Todd R. – Technology and Engineering Teacher, 2012
It is well documented that there is a disproportionate number of males pursuing engineering and technology careers when compared to their female counterparts (Milgram, 2011). Some recent articles have proposed methods to recruit more females into technology education (Milgram, 2011; Zywno, Gilbride, Hiscodes, Waalen, and Kennedy, 1999). However,…
Descriptors: Problem Based Learning, Engineering Education, Engineering Technology, Design
Peer reviewed Peer reviewed
Direct linkDirect link
Lehman, James D.; Kim, WooRi; Harris, Constance – Journal of STEM Education: Innovations and Research, 2014
The new standards for K-12 science education in the United States call for science teachers to integrate engineering concepts and practices within their science teaching in order to improve student learning. To accomplish this, teachers need appropriate instructional materials as well as the knowledge and skills to effectively use them. This mixed…
Descriptors: Communities of Practice, Elementary School Science, Integrated Curriculum, Engineering Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Wilczynski, Vincent; Dixon, Gregg; Ford, Eric – Journal of STEM Education: Innovations and Research, 2005
The Mechanical Engineering Section at the U.S. Coast Guard Academy has developed a comprehensive activity based course to introduce second year students to mechanical engineering design. The culminating design activity for the course requires students to design, construct and test robotic devices that complete engineering challenges. Teams of…
Descriptors: Engineering Education, Engineering Technology, Robotics, Mechanics (Process)