NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
David Kaplan; Kjorte Harra – OECD Publishing, 2023
This report aims to showcase the value of implementing a Bayesian framework to analyse and report results from international large-scale surveys and provide guidance to users who want to analyse the data using this approach. The motivation for this report stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Statistical Inference, Data Analysis, Educational Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kubsch, Marcus; Stamer, Insa; Steiner, Mara; Neumann, Knut; Parchmann, Ilka – Practical Assessment, Research & Evaluation, 2021
In light of the replication crisis in psychology, null-hypothesis significance testing (NHST) and "p"-values have been heavily criticized and various alternatives have been proposed, ranging from slight modifications of the current paradigm to banning "p"-values from journals. Since the physics education research community…
Descriptors: Data Analysis, Bayesian Statistics, Educational Research, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Mimis, Mohamed; El Hajji, Mohamed; Es-saady, Youssef; Oueld Guejdi, Abdellah; Douzi, Hassan; Mammass, Driss – Education and Information Technologies, 2019
The educational recommendation system to provide support for academic guidance and adaptive learning has always been an important issue of research for smart education. A bad guidance can give rise to difficulties in further studies and can be extended to school dropout. This paper explores the potential of Educational Data Mining for academic…
Descriptors: Educational Counseling, Guidance, Educational Research, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
König, Christoph; van de Schoot, Rens – Educational Review, 2018
The ability of a scientific discipline to build cumulative knowledge depends on its predominant method of data analysis. A steady accumulation of knowledge requires approaches which allow researchers to consider results from comparable prior research. Bayesian statistics is especially relevant for establishing a cumulative scientific discipline,…
Descriptors: Bayesian Statistics, Educational Research, Educational Practices, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Villanueva Manjarres, Andrés; Moreno Sandoval, Luis Gabriel; Salinas Suárez, Martha Janneth – Digital Education Review, 2018
Educational Data Mining is an emerging discipline which seeks to develop methods to explore large amounts of data from educational settings, in order to understand students' behavior, interests and results in a better way. In recent years there have been various works related to this specialty and multiple data mining techniques derived from this…
Descriptors: Information Retrieval, Data Analysis, Educational Environment, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Slater, Stefan; Joksimovic, Srecko; Kovanovic, Vitomir; Baker, Ryan S.; Gasevic, Dragan – Journal of Educational and Behavioral Statistics, 2017
In recent years, a wide array of tools have emerged for the purposes of conducting educational data mining (EDM) and/or learning analytics (LA) research. In this article, we hope to highlight some of the most widely used, most accessible, and most powerful tools available for the researcher interested in conducting EDM/LA research. We will…
Descriptors: Data Analysis, Data Processing, Computer Uses in Education, Educational Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Blikstein, Paulo; Worsley, Marcelo – Journal of Learning Analytics, 2016
New high-frequency multimodal data collection technologies and machine learning analysis techniques could offer new insights into learning, especially when students have the opportunity to generate unique, personalized artifacts, such as computer programs, robots, and solutions engineering challenges. To date most of the work on learning analytics…
Descriptors: Data Analysis, Data Collection, Educational Research, Constructivism (Learning)
D'Mello, S. K., Ed.; Calvo, R. A., Ed.; Olney, A., Ed. – International Educational Data Mining Society, 2013
Since its inception in 2008, the Educational Data Mining (EDM) conference series has featured some of the most innovative and fascinating basic and applied research centered on data mining, education, and learning technologies. This tradition of exemplary interdisciplinary research has been kept alive in 2013 as evident through an imaginative,…
Descriptors: Data Analysis, Educational Research, Educational Technology, Interdisciplinary Approach
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gray, Geraldine; McGuinness, Colm; Owende, Philip; Carthy, Aiden – Journal of Learning Analytics, 2014
Increasing college participation rates, and diversity in student population, is posing a challenge to colleges in their attempts to facilitate learners achieve their full academic potential. Learning analytics is an evolving discipline with capability for educational data analysis that could enable better understanding of learning process, and…
Descriptors: Psychometrics, Data Analysis, Academic Achievement, Postsecondary Education
Karabatsos, G.; Walker, S.G. – Society for Research on Educational Effectiveness, 2010
Causal inference is central to educational research, where in data analysis the aim is to learn the causal effects of educational treatments on academic achievement, to evaluate educational policies and practice. Compared to a correlational analysis, a causal analysis enables policymakers to make more meaningful statements about the efficacy of…
Descriptors: Bayesian Statistics, Causal Models, Educational Research, Writing Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Pardos, Zachary A.; Dailey, Matthew D.; Heffernan, Neil T. – International Journal of Artificial Intelligence in Education, 2011
The well established, gold standard approach to finding out what works in education research is to run a randomized controlled trial (RCT) using a standard pre-test and post-test design. RCTs have been used in the intelligent tutoring community for decades to determine which questions and tutorial feedback work best. Practically speaking, however,…
Descriptors: Feedback (Response), Intelligent Tutoring Systems, Pretests Posttests, Educational Research
Karmel, Tom; Mark, Kevin; Mlotkowski, Peter – National Centre for Vocational Education Research (NCVER), 2009
This technical paper examines some large and unusual movements for data in the 2007 VET (Vocational Education Training) Provider Collection by comparison with 2006. Changes in the patterns of courses undertaken explain most of the divergence between students, enrolments and hours. Appendices include: (1) Derivation of the decomposition; (2) Tables…
Descriptors: Vocational Education, Enrollment Rate, Enrollment Trends, Research Reports
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Peer reviewed Peer reviewed
Hambleton, Ronald K.; And Others – Journal of Experimental Education, 1976
The relative merits of several methods, Bayesian and classical, for the estimation of student mastery are investigated. (Editor)
Descriptors: Academic Achievement, Bayesian Statistics, Data Analysis, Educational Research
Fennessey, James – 1976
This final report of a National Institute of Education project explores Bayesian statistical analysis as a paradigm for educational impact studies, particularly studies on the education of the disadvantaged. The position of the report is that much of what is wrong with educational research can be attributed to the use of an inappropriate model for…
Descriptors: Bayesian Statistics, Data Analysis, Disadvantaged Youth, Educational Research
Previous Page | Next Page »
Pages: 1  |  2