Publication Date
In 2025 | 1 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 15 |
Since 2006 (last 20 years) | 18 |
Descriptor
Causal Models | 18 |
Educational Research | 18 |
Randomized Controlled Trials | 18 |
Research Design | 6 |
Evidence Based Practice | 5 |
Intervention | 5 |
Research Methodology | 5 |
Statistical Inference | 5 |
Hierarchical Linear Modeling | 4 |
Prediction | 4 |
Sampling | 4 |
More ▼ |
Source
Author
Adam Sales | 2 |
Anthony F. Botelho | 2 |
Avery H. Closser | 2 |
Balsai, Michael | 2 |
Cromley, Jennifer | 2 |
Dai, Ting | 2 |
Joyce, Kathryn E. | 2 |
Kaplan, Avi | 2 |
Mara, Kyle | 2 |
Perez, Tony | 2 |
Petscher, Yaacov | 2 |
More ▼ |
Publication Type
Reports - Research | 10 |
Journal Articles | 9 |
Reports - Evaluative | 5 |
Opinion Papers | 2 |
Reports - Descriptive | 2 |
Books | 1 |
Guides - Non-Classroom | 1 |
Non-Print Media | 1 |
Education Level
Elementary Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
Indiana | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Peter Z. Schochet – Journal of Educational and Behavioral Statistics, 2025
Random encouragement designs evaluate treatments that aim to increase participation in a program or activity. These randomized controlled trials (RCTs) can also assess the mediated effects of participation itself on longer term outcomes using a complier average causal effect (CACE) estimation framework. This article considers power analysis…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Wendy Castillo; Lindsay Dusard – Society for Research on Educational Effectiveness, 2024
Background: The emergence of causal research in education was almost strictly quantitative twenty years ago, however, that landscape has changed considerably. The number of intervention studies fielded and completed annually has increased substantially, and the quality of the evaluations is much more robust, including paying much greater attention…
Descriptors: Randomized Controlled Trials, Educational Research, Equal Education, Educational Policy
Peter Schochet – Society for Research on Educational Effectiveness, 2024
Random encouragement designs are randomized controlled trials (RCTs) that test interventions aimed at increasing participation in a program or activity whose take up is not universal. In these RCTs, instead of randomizing individuals or clusters directly into treatment and control groups to participate in a program or activity, the randomization…
Descriptors: Statistical Analysis, Computation, Causal Models, Research Design
Avery H. Closser; Adam Sales; Anthony F. Botelho – Grantee Submission, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data on study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Avery H. Closser; Adam Sales; Anthony F. Botelho – Educational Technology Research and Development, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data to study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Kaplan, Avi; Cromley, Jennifer; Perez, Tony; Dai, Ting; Mara, Kyle; Balsai, Michael – Educational Researcher, 2020
In this commentary, we complement other constructive critiques of educational randomized control trials (RCTs) by calling attention to the commonly ignored role of context in causal mechanisms undergirding educational phenomena. We argue that evidence for the central role of context in causal mechanisms challenges the assumption that RCT findings…
Descriptors: Context Effect, Educational Research, Randomized Controlled Trials, Causal Models
Kaplan, Avi; Cromley, Jennifer; Perez, Tony; Dai, Ting; Mara, Kyle; Balsai, Michael – Grantee Submission, 2020
In this commentary, we complement other constructive critiques of educational randomized control trials (RCTs) by calling attention to the commonly ignored role of context in causal mechanisms undergirding educational phenomena. We argue that evidence for the central role of context in causal mechanisms challenges the assumption that RCT findings…
Descriptors: Context Effect, Educational Research, Randomized Controlled Trials, Causal Models
What Works Clearinghouse, 2022
Education decisionmakers need access to the best evidence about the effectiveness of education interventions, including practices, products, programs, and policies. It can be difficult, time consuming, and costly to access and draw conclusions from relevant studies about the effectiveness of interventions. The What Works Clearinghouse (WWC)…
Descriptors: Program Evaluation, Program Effectiveness, Standards, Educational Research
Petscher, Yaacov; Schatschneider, Christopher – Educational and Psychological Measurement, 2019
Complex data structures are ubiquitous in psychological research, especially in educational settings. In the context of randomized controlled trials, students are nested in classrooms but may be cross-classified by other units, such as small groups. Furthermore, in many cases only some students may be nested within a unit while other students may…
Descriptors: Structural Equation Models, Causal Models, Randomized Controlled Trials, Hierarchical Linear Modeling
Petscher, Yaacov; Schatschneider, Christopher – Grantee Submission, 2019
Complex data structures are ubiquitous in psychological research, especially in educational settings. In the context of randomized controlled trials, students are nested in classrooms but may be cross-classified by other units, such as small groups. Further, in many cases only some students may be nested within a unit while other students may not.…
Descriptors: Structural Equation Models, Causal Models, Randomized Controlled Trials, Hierarchical Linear Modeling
Gagnon-Bartsch, J. A.; Sales, A. C.; Wu, E.; Botelho, A. F.; Erickson, J. A.; Miratrix, L. W.; Heffernan, N. T. – Grantee Submission, 2019
Randomized controlled trials (RCTs) admit unconfounded design-based inference--randomization largely justifies the assumptions underlying statistical effect estimates--but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT non-participants. For example, data from A/B…
Descriptors: Randomized Controlled Trials, Educational Research, Prediction, Algorithms
Joyce, Kathryn E. – Educational Research and Evaluation, 2019
Within evidence-based education, results from randomised controlled trials (RCTs), and meta-analyses of them, are taken as reliable evidence for effectiveness -- they speak to "what works". Extending RCT results requires establishing that study samples and settings are representative of the intended target. Although widely recognised as…
Descriptors: Evidence Based Practice, Educational Research, Instructional Effectiveness, Randomized Controlled Trials
Joyce, Kathryn E.; Cartwright, Nancy – American Educational Research Journal, 2020
This article addresses the gap between what works in research and what works in practice. Currently, research in evidence-based education policy and practice focuses on randomized controlled trials. These can support causal ascriptions ("It worked") but provide little basis for local effectiveness predictions ("It will work…
Descriptors: Theory Practice Relationship, Educational Policy, Evidence Based Practice, Educational Research
Hitchcock, John H.; Johnson, R. Burke; Schoonenboom, Judith – Research in the Schools, 2018
The central purpose of this article is to provide an overview of the many ways in which special educators can generate and think about causal inference to inform policy and practice. Consideration of causality across different lenses can be carried out by engaging in multiple method and mixed methods ways of thinking about inference. This article…
Descriptors: Causal Models, Statistical Inference, Special Education, Educational Research
Chan, Wendy – Journal of Research on Educational Effectiveness, 2017
Recent methods to improve generalizations from nonrandom samples typically invoke assumptions such as the strong ignorability of sample selection, which is challenging to meet in practice. Although researchers acknowledge the difficulty in meeting this assumption, point estimates are still provided and used without considering alternative…
Descriptors: Generalization, Inferences, Probability, Educational Research
Previous Page | Next Page ยป
Pages: 1 | 2