NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers3
Laws, Policies, & Programs
Assessments and Surveys
Wechsler Intelligence Scale…1
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gamon Savatsomboon; Phamornpun Yurayat; Ong-art Chanprasitchai; Warawut Narkbunnum; Jibon Kumar Sharma; Surapol Svetsomboon – Journal of Practical Studies in Education, 2024
The paper has three major objectives. The first objective of the paper is to synthesize and define common categories of meta-analysis. The second objective is to propose a way to comprehend these common categories of meta-analysis through learning from their respective generic conceptual frameworks. The third objective is to point out which R…
Descriptors: Classification, Meta Analysis, Computer Software, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2023
Multiple imputation (MI) is a popular method for handling missing data. In education research, it can be challenging to use MI because the data often have a clustered structure that need to be accommodated during MI. Although much research has considered applications of MI in hierarchical data, little is known about its use in cross-classified…
Descriptors: Educational Research, Data Analysis, Error of Measurement, Computation
Smith, Kendal N.; Lamb, Kristen N.; Henson, Robin K. – Gifted Child Quarterly, 2020
Multivariate analysis of variance (MANOVA) is a statistical method used to examine group differences on multiple outcomes. This article reports results of a review of MANOVA in gifted education journals between 2011 and 2017 (N = 56). Findings suggest a number of conceptual and procedural misunderstandings about the nature of MANOVA and its…
Descriptors: Multivariate Analysis, Academically Gifted, Gifted Education, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, W. Holmes – Journal of Experimental Education, 2016
Multivariate analysis of variance (MANOVA) is widely used in educational research to compare means on multiple dependent variables across groups. Researchers faced with the problem of missing data often use multiple imputation of values in place of the missing observations. This study compares the performance of 2 methods for combining p values in…
Descriptors: Multivariate Analysis, Educational Research, Error of Measurement, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel – Review of Educational Research, 2017
In education research, small samples are common because of financial limitations, logistical challenges, or exploratory studies. With small samples, statistical principles on which researchers rely do not hold, leading to trust issues with model estimates and possible replication issues when scaling up. Researchers are generally aware of such…
Descriptors: Models, Statistical Analysis, Sampling, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Stapleton, Laura M.; McNeish, Daniel M.; Yang, Ji Seung – Educational Psychologist, 2016
Multilevel models are often used to evaluate hypotheses about relations among constructs when data are nested within clusters (Raudenbush & Bryk, 2002), although alternative approaches are available when analyzing nested data (Binder & Roberts, 2003; Sterba, 2009). The overarching goal of this article is to suggest when it is appropriate…
Descriptors: Hierarchical Linear Modeling, Data Analysis, Statistical Data, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Pampaka, Maria; Hutcheson, Graeme; Williams, Julian – International Journal of Research & Method in Education, 2016
Missing data is endemic in much educational research. However, practices such as step-wise regression common in the educational research literature have been shown to be dangerous when significant data are missing, and multiple imputation (MI) is generally recommended by statisticians. In this paper, we provide a review of these advances and their…
Descriptors: Data Analysis, Statistical Inference, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Cox, Bradley E.; McIntosh, Kadian; Reason, Robert D.; Terenzini, Patrick T. – Review of Higher Education, 2014
Nearly all quantitative analyses in higher education draw from incomplete datasets-a common problem with no universal solution. In the first part of this paper, we explain why missing data matter and outline the advantages and disadvantages of six common methods for handling missing data. Next, we analyze real-world data from 5,905 students across…
Descriptors: Data Analysis, Statistical Inference, Research Problems, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
What Works Clearinghouse, 2014
This "What Works Clearinghouse Procedures and Standards Handbook (Version 3.0)" provides a detailed description of the standards and procedures of the What Works Clearinghouse (WWC). The remaining chapters of this Handbook are organized to take the reader through the basic steps that the WWC uses to develop a review protocol, identify…
Descriptors: Educational Research, Guides, Intervention, Classification
Stallings, William M. – 1985
In the educational research literature alpha, the a priori level of significance, and p, the a posteriori probability of obtaining a test statistic of at least a certain value when the null hypothesis is true, are often confused. Explanations for this confusion are offered. Paradoxically, alpha retains a prominent place in textbook discussions of…
Descriptors: Educational Research, Hypothesis Testing, Multivariate Analysis, Probability
Thompson, Bruce – 1988
Dissertations are the cumulative, tangible "best evidence" of interests of doctoral faculty and students in serious and incisive scholarship. Thus, dissertations are thoroughly studied by the program review teams periodically hired by boards of higher education in most states. The present paper explores seven errors in quantitative…
Descriptors: Chi Square, Doctoral Dissertations, Educational Research, Higher Education
Peer reviewed Peer reviewed
Sullins, Walter L. – Contemporary Education, 1983
This paper comments on the impact of computers on statistical analysis and presents a concise, nontechnical overview of five statistical methods now being applied in educational research. Appropriate uses of these techniques are pointed out, along with dangers concerning misapplications. (PP)
Descriptors: Comparative Analysis, Computer Programs, Discriminant Analysis, Educational Research
Thompson, Bruce – 1985
Hypothetical data sets are used to demonstrate how canonical correlation methods subsume other commonly utilized parametric methods. Analysis of variance, analysis of covariance, multiple analysis of variance, and multiple analysis of covariance are heavily used by educational researchers. It is concluded that researchers would do well to consider…
Descriptors: Analysis of Covariance, Analysis of Variance, Comparative Analysis, Correlation
Peer reviewed Peer reviewed
Wessels, Holger; Lamb, Michael E.; Hwang, Carl-Philip – European Journal of Psychology of Education, 1996
Illustrates problems facing researchers trying to demonstrate causal relationships between types of nonparental care and differences between groups of Swedish children. Argues that efforts must be made to validate and interpret differences that are found. Indicates ways to avoid misinterpretation of differences that are attributable to…
Descriptors: Causal Models, Child Development, Day Care, Educational Assessment