NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Michelle Alvarado; Katie Basinger-Ellis; Behshad Lahijanian; Meserret Karaca; Diego Alvarado – Advances in Engineering Education, 2023
Student preferences for digital learning and the COVID-19 pandemic have increased demand for asynchronous learning activities, including pre-recorded video lectures. However, there are varying recommendations and a lack of data-driven results for how long video lectures should be. This study has two purposes: (1) To determine and understand…
Descriptors: Student Attitudes, Engineering Education, Electronic Learning, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Reck, Rebecca M. – Advances in Engineering Education, 2020
For the 2020 spring term, courses needed to switch from traditional in-person formats to an online format in about a week due to the COVID-19 pandemic. This paper presents the process and tools used to flip the course content and deliver a dynamic systems and controls course online. Initial feedback was gathered through end of term evaluations and…
Descriptors: Teaching Methods, COVID-19, Pandemics, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Saterbak, Ann; Volz, Tracy; Wettergreen, Matthew – Advances in Engineering Education, 2016
Faculty at Rice University are creating instructional resources to support teaching first-year engineering design using a flipped classroom model. This implementation of flipped pedagogy is unusual because content-driven, lecture courses are usually targeted for flipping, not project-based design courses that already incorporate an abundance of…
Descriptors: Engineering Education, Educational Technology, Technology Uses in Education, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Clark, Renee M.; Kaw, Autar; Besterfield-Sacre, Mary – Advances in Engineering Education, 2016
Blended, flipped, and semi-flipped instructional approaches were used in various sections of a numerical methods course for undergraduate mechanical engineers. During the spring of 2014, a blended approach was used; in the summer of 2014, a combination of blended and flipped instruction was used to deliver a semi-flipped course; and in the fall of…
Descriptors: Engineering Education, Undergraduate Students, Blended Learning, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schrlau, Michael G.; Stevens, Robert J.; Schley, Sara – Advances in Engineering Education, 2016
Flipped classrooms support learner-centered approaches to improve conceptualization, comprehension, and problem solving skills by delivering content outside the classroom and actively engaging students inside the classroom. While literature in engineering and science education supports and encourages the use of inverted instruction, many core…
Descriptors: Engineering Education, Heat, Thermodynamics, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Clark, Renee M.; Besterfield-Sacre, Mary; Budny, Daniel; Bursic, Karen M.; Clark, William W.; Norman, Bryan A.; Parker, Robert S.; Patzer, John F., II; Slaughter, William S. – Advances in Engineering Education, 2016
In the 2013-2014 school year, we implemented the "flipped classroom" as part of an initiative to drive active learning, student engagement and enhanced learning in our school. The flipped courses consisted of freshman through senior engineering classes in introductory programming, statics/mechanics, mechanical design, bio-thermodynamics,…
Descriptors: Engineering Education, Technology Uses in Education, Educational Technology, Homework
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Velegol, Stephanie Butler; Zappe, Sarah E.; Mahoney, Emily – Advances in Engineering Education, 2015
Engineering students benefit from an active and interactive classroom environment where they can be guided through the problem solving process. Typically faculty members spend class time presenting the technical content required to solve problems, leaving students to apply this knowledge and problem solve on their own at home. There has recently…
Descriptors: Engineering Education, Blended Learning, Educational Technology, Homework
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Orange, Amy; Heinecke, Walter; Berger, Edward; Krousgrill, Charles; Mikic, Borjana; Quinn, Dane – Advances in Engineering Education, 2012
Between 2006 and 2010, sophomore engineering students at four universities were exposed to technologies designed to increase their learning in undergraduate engineering courses. Our findings suggest that students at all sites found the technologies integrated into their courses useful to their learning. Video solutions received the most positive…
Descriptors: Higher Education, Engineering Education, Undergraduate Students, Technology Integration
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cameron, Ian; Crosthwaite, Caroline; Norton, Christine; Balliu, Nicoleta; Tadé, Moses; Hoadley, Andrew; Shallcross, David; Barton, Geoff – Advances in Engineering Education, 2008
This work presents a unique education resource for both process engineering students and the industry workforce. The learning environment is based around spherical imagery of real operating plants coupled with interactive embedded activities and content. This Virtual Reality (VR) learning tool has been developed by applying aspects of relevant…
Descriptors: Engineering Education, Industry, Electronic Learning, Simulated Environment