NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jordan M. Renna; Katelyn B. Sondereker; Christopher L. Cors; Sara N. Chaszeyka; Kristin N. Keenan; Michael R. Corigliano; Lindsey A. Milgrom; Jessica R. Onyak; Edward J. Hamad; Maureen E. Stabio – Anatomical Sciences Education, 2024
The reconstruction of two-dimensional (2D) slices to three-dimensional (3D) digital anatomical models requires technical skills and software that are becoming increasingly important to the modern anatomist, but these skills are rarely taught in undergraduate science classrooms. Furthermore, learning opportunities that allow students to…
Descriptors: Anatomy, Undergraduate Students, Science Instruction, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Gabriella P. Sugerman; Manuel K. Rausch – Biomedical Engineering Education, 2022
Hands-on experiences in biomechanics and biomaterials courses are an important part of biomedical engineering education. Curricula of those courses often include laboratory modules on material testing and characterization. Unfortunately, large and expensive mechanical testing equipment may not beĀ available to all students, thus limiting students'…
Descriptors: Biomedicine, Engineering, Elective Courses, Open Source Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Tabassum, Tahseen; Iloska, Marija; Scuereb, Daniel; Taira, Noriko; Jin, Chongguang; Zaitsev, Vladimir; Afshar, Fara; Kim, Taejin – Journal of Chemical Education, 2018
3D printing technology has an enormous potential to apply to chemical engineering education. In this paper, we describe several designs of 3D printed mesoreactors (Y-shape, T-shape, and Long channel shape) using the following steps: reactor sketching, CAD modeling, and reactor printing. With a focus on continuous plug flow mesoreactors (PFRs, i.d.…
Descriptors: College Science, Science Instruction, Undergraduate Study, Hands on Science
Peer reviewed Peer reviewed
Direct linkDirect link
Carroll, Felix A.; Blauch, David N. – Journal of Chemical Education, 2017
3D printing was used to prepare models of the calculated geometries of unsaturated organic structures. Incorporation of p orbital isosurfaces into the models enables students in introductory organic chemistry courses to have hands-on experience with the concept of orbital alignment in strained and unstrained p systems.
Descriptors: Science Instruction, Organic Chemistry, Hands on Science, Introductory Courses
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Koehler, Karen E.; Wild, Tiffany A.; Tikkun, Sean – Journal of Science Education for Students with Disabilities, 2018
This article presents the results of a study on the use of 3-D printed models in a science classroom for students with visual impairments and examines whether the use of these models impacts student conceptual understanding and misconceptions related to geosciences concepts, specifically plate tectonics. Data were collected one week prior to…
Descriptors: Science Instruction, Visual Impairments, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Penny, Matthew R.; Cao, Zi Jing; Patel, Bhaven; dos Santos, Bruno Sil; Asquith, Christopher R. M.; Szulc, Blanka R.; Rao, Zenobia X.; Muwaffak, Zaid; Malkinson, John P.; Hilton, Stephen T. – Journal of Chemical Education, 2017
Three-dimensional (3D) chemical models are a well-established learning tool used to enhance the understanding of chemical structures by converting two-dimensional paper or screen outputs into realistic three-dimensional objects. While commercial atom model kits are readily available, there is a surprising lack of large molecular and orbital models…
Descriptors: Organic Chemistry, Science Instruction, Scientific Concepts, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Xu, Renmei; Flowers, Jim – Technology and Engineering Teacher, 2015
Integrating different science, technology, engineering, and mathematics (STEM) areas can help students learn and leverage both the equipment and expertise at a single school. In comparing graphic communications classes with classes that involve rapid prototyping (RP) technologies like 3D printing, there are sufficient similarities between goals,…
Descriptors: Educational Technology, STEM Education, Integrated Activities, Specialization