Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 21 |
Descriptor
Chemical Engineering | 21 |
Educational Technology | 21 |
Science Instruction | 21 |
Science Laboratories | 11 |
College Science | 10 |
Chemistry | 7 |
Engineering Education | 7 |
Science Experiments | 6 |
Teaching Methods | 6 |
Technology Uses in Education | 6 |
Computer Simulation | 5 |
More ▼ |
Author
Publication Type
Journal Articles | 21 |
Reports - Descriptive | 14 |
Reports - Research | 6 |
Reports - Evaluative | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 17 |
Postsecondary Education | 14 |
High Schools | 1 |
Audience
Teachers | 4 |
Location
Brazil | 1 |
Canada | 1 |
Pennsylvania | 1 |
Texas | 1 |
Tunisia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Keisha C. A. Antoine; Lealon L. Martin; Jorge F. Gabitto – Chemical Engineering Education, 2024
In this paper we demonstrate that using mixed reality (MR) technology can innovate our chemical engineering laboratory curriculum at Prairie View A&M University, a Historically Black College/University (HBCU). Particularly, we describe the development of a MR proof of concept to carry out a traditional fluid mechanics lab -- pressure drop as a…
Descriptors: Science Instruction, Black Colleges, Chemical Engineering, Science Laboratories
Jinchang Liu; Qin Liu – Journal of Chemical Education, 2023
The COVID-19 epidemic adversely impacted chemical engineering experiments(CEEs). Students underwent online learning, i.e., software simulation of the CEE course, instead of laboratory learning. A questionnaire survey revealed that students exhibited low enthusiasm for online learning, showing that online courses cannot ensure learning quality.…
Descriptors: Science Instruction, Chemical Engineering, Online Courses, Educational Technology
Yunhua Li; Weizhong Liao; Cuixue Chen; Meiling Ye; Alexander Luis Imbault – Journal of Chemical Education, 2023
The electrolysis of water to produce hydrogen is a critical step in many green chemistry processes. The key to the efficiency of water electrolysis is the synthesis of an appropriate electrocatalyst. Three-dimensional (3D) printing is an increasingly important part of many industrial processes. In this study, we propose an efficient laboratory…
Descriptors: Printing, Computer Peripherals, Educational Technology, Chemistry
Marlowe, Justin; Tsilomelekis, George – Journal of Chemical Education, 2020
The importance of utilizing spectroscopic techniques for unraveling structural and compositional changes in nonreacting and reacting systems is unquestionable. Nowadays, efforts are directed towards the introduction of relevant spectroscopic techniques to undergraduate students in order to prepare them for future careers in industry and academia,…
Descriptors: Science Instruction, College Science, Spectroscopy, Chemistry
Cavalcante dos Santos, Rafael; Cavalcanti, Juliane Natalizi Cabral; Werneck do Carmo, Elisa Carneiro; de Souza, Fernando Costa; Soares, Wesley Garcia; de Souza, Cristiane Gimenes; de Andrade, Débora França; d'Avila, Luiz Antonio – Journal of Chemical Education, 2020
An experimental procedure is presented that was developed by fifth-year chemical engineering and industrial chemistry undergraduates at the Federal University of Rio de Janeiro doing the discipline on Experimental Organic Technology. The aim of this study was to apply the solvatochromic effect of the dye Nile Blue chloride to the characterization…
Descriptors: Science Instruction, College Science, Undergraduate Study, Chemistry
Joss, Lisa; Müller, Erich A. – Journal of Chemical Education, 2019
Recent advances in computer hardware and algorithms are spawning an explosive growth in the use of computer-based systems aimed at analyzing and ultimately correlating large amounts of experimental and synthetic data. As these machine learning tools become more widespread, it is becoming imperative that scientists and researchers become familiar…
Descriptors: Science Instruction, Science Laboratories, Chemical Engineering, Educational Technology
Tabassum, Tahseen; Iloska, Marija; Scuereb, Daniel; Taira, Noriko; Jin, Chongguang; Zaitsev, Vladimir; Afshar, Fara; Kim, Taejin – Journal of Chemical Education, 2018
3D printing technology has an enormous potential to apply to chemical engineering education. In this paper, we describe several designs of 3D printed mesoreactors (Y-shape, T-shape, and Long channel shape) using the following steps: reactor sketching, CAD modeling, and reactor printing. With a focus on continuous plug flow mesoreactors (PFRs, i.d.…
Descriptors: College Science, Science Instruction, Undergraduate Study, Hands on Science
Falconer, John L.; Nicodemus, Garret D. – Chemical Engineering Education, 2014
Interactive Mathematica simulations with graphical displays of system behavior are an excellent addition to chemical engineering courses. The Manipulate command in Mathematica creates on-screen controls that allow users to change system variables and see the graphical output almost instantaneously. They can be used both in and outside class. More…
Descriptors: Computer Simulation, Mathematics, Engineering Education, Chemical Engineering
Lee, Kilho; Comolli, Noelle K.; Kelly, William J.; Huang, Zuyi – Chemical Engineering Education, 2015
Mathematical models play an important role in biochemical engineering. For example, the models developed in the field of systems biology have been used to identify drug targets to treat pathogens such as Pseudomonas aeruginosa in biofilms. In addition, competitive binding models for chromatography processes have been developed to predict expanded…
Descriptors: Chemical Engineering, Biochemistry, College Science, Science Instruction
Falconer, John L.; Nicodemus, Garret D.; Medlin, J. Will; deGrazia, Janet; McDanel, Katherine P. – Chemical Engineering Education, 2014
A ready-to-use package of active-learning materials for a semester-long chemical engineering thermodynamics course was prepared for instructors, and similar materials are being prepared for a material and energy balance course. The course package includes ConcepTests, explanations of the ConcepTests for instructors, links to screencasts, chapter…
Descriptors: Science Instruction, Chemical Engineering, Thermodynamics, Energy
Anastasio, Daniel; Suresh, Aravind; Burkey, Daniel D. – Chemical Engineering Education, 2013
Mobile platforms and cloud computing allow collaborative sharing and submission of work in ways not feasible until recently. In this article, we detail how we took a writing-intensive laboratory and made the submission, reading, grading, and returning of student work online and paper-free, while maintaining familiar elements of pen-and-paper…
Descriptors: Internet, Information Storage, Educational Technology, Chemical Engineering
Zualkernan, Imran A.; Husseini, Ghaleb A.; Loughlin, Kevin F.; Mohebzada, Jamshaid G.; El Gaml, Moataz – Chemical Engineering Education, 2013
Social networking platforms and computer games represent a natural informal learning environment for the current generation of learners in higher education. This paper explores the use of game-based learning in the context of an undergraduate chemical engineering remote laboratory. Specifically, students are allowed to manipulate chemical…
Descriptors: Social Networks, Chemical Engineering, Computer Games, Teaching Methods
Liberatore, Matthew W.; Marr, David W. M.; Herring, Andrew M.; Way, J. Douglas – Chemical Engineering Education, 2013
Inspired by YouTube videos, students created homework problems as part of a class project. The project has been successful at different parts of the semester and demonstrated learning of course concepts. These new problems were implemented both in class and as part of homework assignments without significant changes. Examples from a material and…
Descriptors: Homework, Science Instruction, Social Networks, Educational Technology
Archer, Shivaun D. – Chemical Engineering Education, 2011
Microfluidics, the manipulation of fluids in channels with micron dimensions, has emerged as an exciting new field that impacts the broad area of nano/microtechnology. This is an important area to train the next generation of chemical engineers. This paper describes an experiment where students are given a problem to design a microfluidic mixer…
Descriptors: Chemical Engineering, Science Laboratories, College Science, Science Instruction
Chirdon, William M. – Chemical Engineering Education, 2010
This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…
Descriptors: Plastics, Computer Simulation, Internet, Educational Technology
Previous Page | Next Page »
Pages: 1 | 2