NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers3
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 24 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mihret, Zemenu; Alemu, Mekbib; Assefa, Shimeles – Pedagogical Research, 2023
The objective of this study was to examine the effectiveness of blended physics laboratory experimentation on pre-service physics teachers' (PSPTs') understanding of the nature of science (NOS) during an electricity and magnetism laboratory course. The study used a non-equivalent comparison group using a pre-test-post-test quasi-experimental…
Descriptors: Science Instruction, Physics, Science Laboratories, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Michael A. Rother – International Journal of Mathematical Education in Science and Technology, 2024
A straightforward experimental set-up, requiring a two-liter bottle, a ruler and a stopwatch, is used to provide data appropriate for modelling with Torricelli's Law in the simplest case, and a more sophisticated differential equation when losses are taken into account and a pipe extension is considered. With only an exit hole included in the…
Descriptors: Science Experiments, Science Education, Scientific Principles, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Pleasants, Jacob – Science Teacher, 2018
In classroom science laboratories, unlike a real science laboratory, the teacher can guide students away from potential dead ends and toward data that are most likely to result in accurate conclusions. Sometimes, though, allowing students to pursue dead ends and to collect "bad" data can provide especially rich learning opportunities.…
Descriptors: Science Instruction, Science Experiments, Science Laboratories, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Mac Fhionnlaoich, Niamh; Ibsen, Stuart; Serrano, Luis A.; Taylor, Alaric; Qi, Runzhang; Guldin, Stefan – Journal of Chemical Education, 2018
Thin-layer chromatography (TLC) is one of the basic analytical procedures in chemistry and allows the demonstration of various chemical principles in an educational setting. An often-overlooked aspect of TLC is the capability to quantify isolated target compounds in an unknown sample. Here, we present a suitable route to implement quantitative…
Descriptors: Science Instruction, Chemistry, College Science, Undergraduate Study
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Chia-Yu; Wu, Chao-Jung; Chiou, Guo-Li; Wong, Wing-Kwong – Journal of Baltic Science Education, 2022
Proposing scientific descriptions is critical for individuals to cope with daily problems and acquire essential information. Nonetheless, few classes have enhanced students' ability to describe facts of scientific phenomena. Thus, using a tool of technology-based laboratory, this research examined whether students' scientific descriptions and…
Descriptors: Undergraduate Students, Mathematical Models, Science Instruction, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Nunn, John – Physics Education, 2015
The speed of sound in a solid is determined by the density and elasticity of the material. Young's modulus can therefore be calculated once the density and the speed of sound in the solid are measured. The density can be measured relatively easily, and the speed of sound through a rod can be measured very inexpensively by setting up a longitudinal…
Descriptors: Measurement Techniques, Acoustics, Computer Software, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Claycomb, James R.; Valentine, John H. – Physics Education, 2015
A low-cost chaos dynamics lab is developed for quantitative demonstration of the butterfly effect using a magnetic pendulum. Chaotic motion is explored by recording magnetic time series. Students analyze the data in Excel® to investigate the butterfly effect as well as the reconstruction of the strange attractor using time delay plots. The lab…
Descriptors: Science Instruction, Physics, Science Laboratories, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Baird, William H. – Physics Education, 2013
Some of the results from the electrostatics portion of introductory physics are particularly difficult for students to understand and/or believe. For students who have yet to take vector calculus, Gauss's law is far from obvious and may seem more difficult than Coulomb's. When these same students are told that the minimum potential…
Descriptors: Science Instruction, Educational Technology, Teaching Methods, Spreadsheets
Peer reviewed Peer reviewed
Direct linkDirect link
Countryman, Colleen Lanz – Physics Teacher, 2014
"The Physics Teacher's" "iPhysicsLabs" column has been dedicated to the implementation of smartphones in instructional physics labs as data collection devices. In order to understand any data set, however, one should first understand how it is obtained. This concern regarding the inclusion of smartphones in lab activities…
Descriptors: Physics, Science Instruction, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Samantha M. Curle Ed.; Mustafa Tevfik Hebebci – Online Submission, 2023
The International Conference on Academic Studies in Technology and Education (ICASTE) is set to take place at Amara Premier Palace Hotel in Antalya, Turkey, from November 16-19, 2023. Organized by the International Society for Research in Education and Science (ISRES) and the International Society for Academic Research in Science, Technology, and…
Descriptors: Educational Technology, Artificial Intelligence, Higher Education, Learner Engagement
Peer reviewed Peer reviewed
Direct linkDirect link
Archer, Shivaun D. – Chemical Engineering Education, 2011
Microfluidics, the manipulation of fluids in channels with micron dimensions, has emerged as an exciting new field that impacts the broad area of nano/microtechnology. This is an important area to train the next generation of chemical engineers. This paper describes an experiment where students are given a problem to design a microfluidic mixer…
Descriptors: Chemical Engineering, Science Laboratories, College Science, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Pellitero, Miguel Aller; Lamsfus, Carlos Alvarez; Borge, Javier – Journal of Chemical Education, 2013
Oscillating chemical reactions (OCRs) have been known since 1828, with the Belousov-Zhabotinskii (BZ) reaction the most studied example. Initially, OCRs were considered to be special cases due to the small number detected and because the oscillatory behavior did not seem to agree with the second law of thermodynamics. However, OCRs have become…
Descriptors: Chemistry, Science Instruction, Scientific Principles, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Lisovskiy, V. A.; Koval, V. A.; Artushenko, E. P.; Yegorenkov, V. D. – European Journal of Physics, 2012
In this paper we suggest a simple technique for validating the Goldstein-Wehner law for a stratified positive column of dc glow discharge while studying the properties of gas discharges in an undergraduate laboratory. To accomplish this a simple device with a pre-vacuum mechanical pump, dc source and gas pressure gauge is required. Experiments may…
Descriptors: Physics, Photography, Science Instruction, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Whyntie, T.; Parker, B. – Physics Education, 2013
The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…
Descriptors: Science Instruction, Physics, Scientific Principles, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Abellan-Garcia, Francisco J.; Garcia-Gamuz, Jose Antonio; Valerdi-Perez, Ramon P.; Ibanez-Mengual, Jose A. – European Journal of Physics, 2012
The aim of this paper is to determine the acceleration due to gravity "g", using a simple and low-cost experimental device. The time taken for a metallic ball to travel a predetermined distance is measured and recorded by a series of optical sensors. Four pairs of sensors are placed along the external surface of a vertical methacrylate tube at…
Descriptors: Physics, Science Instruction, Scientific Principles, Science Experiments
Previous Page | Next Page »
Pages: 1  |  2