NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Silvia Di Battista – British Journal of Educational Psychology, 2025
Background: According to gender-differentiated attributions of failure in the STEM field, errors tend to be attributed to internal factors more to girls than to boys. Aims: This experimental study explored factors influencing gender-differentiated teachers' internal attributions of girls' and boys' errors and the consequent likelihood of teachers'…
Descriptors: Gender Differences, Failure, Attribution Theory, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Hacker, Michael – Technology and Engineering Teacher, 2018
Computational Thinking (CT) is being promoted as "a fundamental skill used by everyone in the world by the middle of the 21st Century" (Wing, 2006). CT has been effectively integrated into history, ELA, mathematics, art, and science courses (Settle, et al., 2012). However, there has been no analogous effort to integrate CT into…
Descriptors: Skill Development, Thinking Skills, Technology Education, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Amado, Nélia, Ed.; Carreira, Susana, Ed.; Jones, Keith, Ed. – Research in Mathematics Education, 2018
The innovative volume seeks to broaden the scope of research on mathematical problem solving in different educational environments. It brings together contributions not only from leading researchers, but also highlights collaborations with younger researchers to broadly explore mathematical problem-solving across many fields: mathematics…
Descriptors: Mathematics Education, Creativity, Teaching Methods, Problem Solving
Bakke, Christine K. – ProQuest LLC, 2013
The purpose of this study is to examine whether participation in robotics provides opportunities for educational and professional skill development, significant enough to merit the recommendation of robotics courses as a part of mainstream curriculum offerings in K-12 schools. This non-experimental, mixed methods study examined current junior high…
Descriptors: Robotics, Junior High School Students, High School Students, Secondary Education
Peer reviewed Peer reviewed
Direct linkDirect link
Flannery, Louise P.; Bers, Marina Umaschi – Journal of Research on Technology in Education, 2013
Young learners today generate, express, and interact with sophisticated ideas using a range of digital tools to explore interactive stories, animations, computer games, and robotics. In recent years, new developmentally appropriate robotics kits have been entering early childhood classrooms. This paper presents a retrospective analysis of one…
Descriptors: Developmentally Appropriate Practices, Robotics, Early Childhood Education, Programming
Gura, Mark – Learning & Leading with Technology, 2012
Lego robotics is engaging, hands-on, and encompasses every one of the NETS for Students. It also inspires a love of science, technology, engineering, and mathematics (STEM) and provides the experience students need to use digital age skills in the real world. In this article, the author discusses how schools get involved with Lego Robotics and…
Descriptors: Student Participation, Robotics, Educational Technology, Learning Motivation
Peer reviewed Peer reviewed
Direct linkDirect link
Deal, Walter F.; Jones, Catherine E. – Technology and Engineering Teacher, 2012
Humans by their very nature are users of tools, materials, and processes as a part of their survival and existence. As humans have progressed over time, their civilizations and societies have changed beyond imagination and have moved from hunters and gatherers of food and materials for survival to sophisticated societies with complex social and…
Descriptors: Technology Integration, Robotics, Technological Literacy, Manufacturing
Peer reviewed Peer reviewed
Direct linkDirect link
Nicholas, Howard; Ng, Wan – International Journal of Technology and Design Education, 2012
While the ready-made Lego[TM] Robotics kits are popular in schools and are used by students at both primary and secondary year levels, using the Picaxe microcontroller (chip) to create simple electronic devices, including robotic devices is less popular. The latter imposes an additional challenge as a result of the need to construct the universal…
Descriptors: Foreign Countries, Secondary School Teachers, Teacher Attitudes, Pedagogical Content Knowledge
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Castledine, Alanah-Rei; Chalmers, Chris – Design and Technology Education, 2011
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…
Descriptors: Foreign Countries, Problem Solving, Grade 6, Relevance (Education)
Peer reviewed Peer reviewed
Direct linkDirect link
Levy, Sharona T.; Mioduser, David – International Journal of Technology and Design Education, 2008
This study investigates young children's perspectives in explaining a self-regulating mobile robot, as they learn to program its behaviors from rules. We explore their descriptions of a robot in action to determine the nature of their explanatory frameworks: psychological or technological. We have also studied the role of an adult's intervention…
Descriptors: Educational Theories, Young Children, Kindergarten, Robotics
Peer reviewed Peer reviewed
Direct linkDirect link
Roman, Harry T. – Technology Teacher, 2007
Robots provide teachers with opportunities to teach multidimensional thinking and critical thinking skills. In this article, the author presents a classroom activity wherein students are required to design a firefighting robot. This activity aims to demonstrate the complexity and interdisciplinary nature of the robotics technology.
Descriptors: Critical Thinking, Robotics, Thinking Skills, Class Activities