Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 17 |
Descriptor
Effect Size | 21 |
Meta Analysis | 21 |
Computation | 12 |
Statistical Analysis | 8 |
Models | 6 |
Research Design | 5 |
Correlation | 4 |
Error of Measurement | 4 |
Monte Carlo Methods | 4 |
Multivariate Analysis | 4 |
Sampling | 4 |
More ▼ |
Source
Journal of Educational and… | 21 |
Author
Hedges, Larry V. | 5 |
Becker, Betsy Jane | 2 |
Pustejovsky, James E. | 2 |
Ahn, Soyeon | 1 |
Aloe, Ariel M. | 1 |
Beretvas, S. Natasha | 1 |
Camilli, Gregory | 1 |
Chiu, Chia-Yi | 1 |
Elizabeth Tipton | 1 |
Ferron, John | 1 |
Greenhouse, Joel B. | 1 |
More ▼ |
Publication Type
Journal Articles | 21 |
Reports - Research | 14 |
Reports - Evaluative | 5 |
Reports - Descriptive | 2 |
Education Level
Adult Education | 1 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kaitlyn G. Fitzgerald; Elizabeth Tipton – Journal of Educational and Behavioral Statistics, 2025
This article presents methods for using extant data to improve the properties of estimators of the standardized mean difference (SMD) effect size. Because samples recruited into education research studies are often more homogeneous than the populations of policy interest, the variation in educational outcomes can be smaller in these samples than…
Descriptors: Data Use, Computation, Effect Size, Meta Analysis
James E. Pustejovsky; Man Chen – Journal of Educational and Behavioral Statistics, 2024
Meta-analyses of educational research findings frequently involve statistically dependent effect size estimates. Meta-analysts have often addressed dependence issues using ad hoc approaches that involve modifying the data to conform to the assumptions of models for independent effect size estimates, such as by aggregating estimates to obtain one…
Descriptors: Meta Analysis, Multivariate Analysis, Effect Size, Evaluation Methods
Joo, Seang-Hwane; Wang, Yan; Ferron, John; Beretvas, S. Natasha; Moeyaert, Mariola; Van Den Noortgate, Wim – Journal of Educational and Behavioral Statistics, 2022
Multiple baseline (MB) designs are becoming more prevalent in educational and behavioral research, and as they do, there is growing interest in combining effect size estimates across studies. To further refine the meta-analytic methods of estimating the effect, this study developed and compared eight alternative methods of estimating intervention…
Descriptors: Meta Analysis, Effect Size, Computation, Statistical Analysis
Vembye, Mikkel Helding; Pustejovsky, James Eric; Pigott, Therese Deocampo – Journal of Educational and Behavioral Statistics, 2023
Meta-analytic models for dependent effect sizes have grown increasingly sophisticated over the last few decades, which has created challenges for a priori power calculations. We introduce power approximations for tests of average effect sizes based upon several common approaches for handling dependent effect sizes. In a Monte Carlo simulation, we…
Descriptors: Meta Analysis, Robustness (Statistics), Statistical Analysis, Models
Hedges, Larry V.; Schauer, Jacob M. – Journal of Educational and Behavioral Statistics, 2019
The problem of assessing whether experimental results can be replicated is becoming increasingly important in many areas of science. It is often assumed that assessing replication is straightforward: All one needs to do is repeat the study and see whether the results of the original and replication studies agree. This article shows that the…
Descriptors: Replication (Evaluation), Research Design, Research Methodology, Program Evaluation
Polanin, Joshua R.; Hennessy, Emily A.; Tanner-Smith, Emily E. – Journal of Educational and Behavioral Statistics, 2017
Meta-analysis is a statistical technique that allows an analyst to synthesize effect sizes from multiple primary studies. To estimate meta-analysis models, the open-source statistical environment R is quickly becoming a popular choice. The meta-analytic community has contributed to this growth by developing numerous packages specific to…
Descriptors: Meta Analysis, Open Source Technology, Computer Software, Effect Size
Tipton, Elizabeth; Pustejovsky, James E. – Journal of Educational and Behavioral Statistics, 2015
Meta-analyses often include studies that report multiple effect sizes based on a common pool of subjects or that report effect sizes from several samples that were treated with very similar research protocols. The inclusion of such studies introduces dependence among the effect size estimates. When the number of studies is large, robust variance…
Descriptors: Meta Analysis, Effect Size, Computation, Robustness (Statistics)
VanHoudnos, Nathan M.; Greenhouse, Joel B. – Journal of Educational and Behavioral Statistics, 2016
When cluster randomized experiments are analyzed as if units were independent, test statistics for treatment effects can be anticonservative. Hedges proposed a correction for such tests by scaling them to control their Type I error rate. This article generalizes the Hedges correction from a posttest-only experimental design to more common designs…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Error of Measurement, Scaling
Lai, Mark H. C.; Kwok, Oi-Man – Journal of Educational and Behavioral Statistics, 2014
Multilevel modeling techniques are becoming more popular in handling data with multilevel structure in educational and behavioral research. Recently, researchers have paid more attention to cross-classified data structure that naturally arises in educational settings. However, unlike traditional single-level research, methodological studies about…
Descriptors: Hierarchical Linear Modeling, Differences, Effect Size, Computation
Pustejovsky, James E.; Hedges, Larry V.; Shadish, William R. – Journal of Educational and Behavioral Statistics, 2014
In single-case research, the multiple baseline design is a widely used approach for evaluating the effects of interventions on individuals. Multiple baseline designs involve repeated measurement of outcomes over time and the controlled introduction of a treatment at different times for different individuals. This article outlines a general…
Descriptors: Hierarchical Linear Modeling, Effect Size, Maximum Likelihood Statistics, Computation
Ahn, Soyeon; Becker, Betsy Jane – Journal of Educational and Behavioral Statistics, 2011
This paper examines the impact of quality-score weights in meta-analysis. A simulation examines the roles of study characteristics such as population effect size (ES) and its variance on the bias and mean square errors (MSEs) of the estimators for several patterns of relationship between quality and ES, and for specific patterns of systematic…
Descriptors: Meta Analysis, Scores, Effect Size, Statistical Bias
Hedges, Larry V. – Journal of Educational and Behavioral Statistics, 2011
Research designs involving cluster randomization are becoming increasingly important in educational and behavioral research. Many of these designs involve two levels of clustering or nesting (students within classes and classes within schools). Researchers would like to compute effect size indexes based on the standardized mean difference to…
Descriptors: Effect Size, Research Design, Experiments, Computation
Valentine, Jeffrey C.; Pigott, Therese D.; Rothstein, Hannah R. – Journal of Educational and Behavioral Statistics, 2010
In this article, the authors outline methods for using fixed and random effects power analysis in the context of meta-analysis. Like statistical power analysis for primary studies, power analysis for meta-analysis can be done either prospectively or retrospectively and requires assumptions about parameters that are unknown. The authors provide…
Descriptors: Statistical Analysis, Meta Analysis, Computation, Effect Size
Aloe, Ariel M.; Becker, Betsy Jane – Journal of Educational and Behavioral Statistics, 2012
A new effect size representing the predictive power of an independent variable from a multiple regression model is presented. The index, denoted as r[subscript sp], is the semipartial correlation of the predictor with the outcome of interest. This effect size can be computed when multiple predictor variables are included in the regression model…
Descriptors: Meta Analysis, Effect Size, Multiple Regression Analysis, Models
Camilli, Gregory; de la Torre, Jimmy; Chiu, Chia-Yi – Journal of Educational and Behavioral Statistics, 2010
In this article, three multilevel models for meta-analysis are examined. Hedges and Olkin suggested that effect sizes follow a noncentral "t" distribution and proposed several approximate methods. Raudenbush and Bryk further refined this model; however, this procedure is based on a normal approximation. In the current research literature, this…
Descriptors: Markov Processes, Effect Size, Meta Analysis, Monte Carlo Methods
Previous Page | Next Page ยป
Pages: 1 | 2