Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 8 |
Descriptor
Source
National Center for Education… | 2 |
Annenberg Institute for… | 1 |
Grantee Submission | 1 |
Journal of Educational and… | 1 |
Journal of Experimental… | 1 |
Journal of Research on… | 1 |
What Works Clearinghouse | 1 |
Author
Benjamin W. Domingue | 2 |
Deke, John | 2 |
Joshua B. Gilbert | 2 |
Luke W. Miratrix | 2 |
Mridul Joshi | 2 |
Adelle K. Sturgell | 1 |
Beretvas, S. Natasha | 1 |
Bloom, Howard S. | 1 |
David A. Klingbeil | 1 |
Ethan R. Van Norman | 1 |
Ferron, John M. | 1 |
More ▼ |
Publication Type
Reports - Research | 6 |
Journal Articles | 3 |
Guides - Non-Classroom | 2 |
Numerical/Quantitative Data | 1 |
Education Level
Early Childhood Education | 2 |
Elementary Education | 2 |
Grade 2 | 2 |
Primary Education | 2 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ethan R. Van Norman; David A. Klingbeil; Adelle K. Sturgell – Grantee Submission, 2024
Single-case experimental designs (SCEDs) have been used with increasing frequency to identify evidence-based interventions in education. The purpose of this study was to explore how several procedural characteristics, including within-phase variability (i.e., measurement error), number of baseline observations, and number of intervention…
Descriptors: Research Design, Case Studies, Effect Size, Error of Measurement
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Journal of Educational and Behavioral Statistics, 2025
Analyzing heterogeneous treatment effects (HTEs) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and preintervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics
Deke, John; Finucane, Mariel; Thal, Daniel – National Center for Education Evaluation and Regional Assistance, 2022
BASIE is a framework for interpreting impact estimates from evaluations. It is an alternative to null hypothesis significance testing. This guide walks researchers through the key steps of applying BASIE, including selecting prior evidence, reporting impact estimates, interpreting impact estimates, and conducting sensitivity analyses. The guide…
Descriptors: Bayesian Statistics, Educational Research, Data Interpretation, Hypothesis Testing
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Annenberg Institute for School Reform at Brown University, 2024
Analyzing heterogeneous treatment effects (HTE) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and pre-intervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics
Bloom, Howard S.; Spybrook, Jessaca – Journal of Research on Educational Effectiveness, 2017
Multisite trials, which are being used with increasing frequency in education and evaluation research, provide an exciting opportunity for learning about how the effects of interventions or programs are distributed across sites. In particular, these studies can produce rigorous estimates of a cross-site mean effect of program assignment…
Descriptors: Program Effectiveness, Program Evaluation, Sample Size, Evaluation Research
Deke, John; Wei, Thomas; Kautz, Tim – National Center for Education Evaluation and Regional Assistance, 2017
Evaluators of education interventions are increasingly designing studies to detect impacts much smaller than the 0.20 standard deviations that Cohen (1988) characterized as "small." While the need to detect smaller impacts is based on compelling arguments that such impacts are substantively meaningful, the drive to detect smaller impacts…
Descriptors: Intervention, Educational Research, Research Problems, Statistical Bias
Ugille, Maaike; Moeyaert, Mariola; Beretvas, S. Natasha; Ferron, John M.; Van den Noortgate, Wim – Journal of Experimental Education, 2014
A multilevel meta-analysis can combine the results of several single-subject experimental design studies. However, the estimated effects are biased if the effect sizes are standardized and the number of measurement occasions is small. In this study, the authors investigated 4 approaches to correct for this bias. First, the standardized effect…
Descriptors: Effect Size, Statistical Bias, Sample Size, Regression (Statistics)
What Works Clearinghouse, 2014
This "What Works Clearinghouse Procedures and Standards Handbook (Version 3.0)" provides a detailed description of the standards and procedures of the What Works Clearinghouse (WWC). The remaining chapters of this Handbook are organized to take the reader through the basic steps that the WWC uses to develop a review protocol, identify…
Descriptors: Educational Research, Guides, Intervention, Classification