NotesFAQContact Us
Collection
Advanced
Search Tips
Education Level
Higher Education1
Audience
Researchers1
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mathur, Maya B.; VanderWeele, Tyler J. – Research Synthesis Methods, 2021
Meta-regression analyses usually focus on estimating and testing differences in average effect sizes between individual levels of each meta-regression covariate in turn. These metrics are useful but have limitations: they consider each covariate individually, rather than in combination, and they characterize only the mean of a potentially…
Descriptors: Regression (Statistics), Meta Analysis, Effect Size, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pek, Jolynn; Wong, Octavia; Wong, C. M. – Practical Assessment, Research & Evaluation, 2017
Data transformations have been promoted as a popular and easy-to-implement remedy to address the assumption of normally distributed errors (in the population) in linear regression. However, the application of data transformations introduces non-ignorable complexities which should be fully appreciated before their implementation. This paper adds to…
Descriptors: Data Analysis, Regression (Statistics), Statistical Inference, Data Interpretation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Banjanovic, Erin S.; Osborne, Jason W. – Practical Assessment, Research & Evaluation, 2016
Confidence intervals for effect sizes (CIES) provide readers with an estimate of the strength of a reported statistic as well as the relative precision of the point estimate. These statistics offer more information and context than null hypothesis statistic testing. Although confidence intervals have been recommended by scholars for many years,…
Descriptors: Computation, Statistical Analysis, Effect Size, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Weller, Susan C. – Field Methods, 2015
This article presents a simple approach to making quick sample size estimates for basic hypothesis tests. Although there are many sources available for estimating sample sizes, methods are not often integrated across statistical tests, levels of measurement of variables, or effect sizes. A few parameters are required to estimate sample sizes and…
Descriptors: Sample Size, Statistical Analysis, Computation, Hypothesis Testing
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Deke, John; Wei, Thomas; Kautz, Tim – National Center for Education Evaluation and Regional Assistance, 2017
Evaluators of education interventions are increasingly designing studies to detect impacts much smaller than the 0.20 standard deviations that Cohen (1988) characterized as "small." While the need to detect smaller impacts is based on compelling arguments that such impacts are substantively meaningful, the drive to detect smaller impacts…
Descriptors: Intervention, Educational Research, Research Problems, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Ugille, Maaike; Moeyaert, Mariola; Beretvas, S. Natasha; Ferron, John M.; Van den Noortgate, Wim – Journal of Experimental Education, 2014
A multilevel meta-analysis can combine the results of several single-subject experimental design studies. However, the estimated effects are biased if the effect sizes are standardized and the number of measurement occasions is small. In this study, the authors investigated 4 approaches to correct for this bias. First, the standardized effect…
Descriptors: Effect Size, Statistical Bias, Sample Size, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Crawford, John R.; Garthwaite, Paul H.; Denham, Annie K.; Chelune, Gordon J. – Psychological Assessment, 2012
Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because…
Descriptors: Regression (Statistics), Equations (Mathematics), Psychological Evaluation, Multiple Regression Analysis
Belasco, Elizabeth Mathison – ProQuest LLC, 2010
Bayesian statistical inference within structural equation modeling was used to examine the influence of hypothetical constructs on the successful persistence of college freshmen to degree completion. The affects of three latent variables: (a) academic capital; (b) cultural capital; and, (c) social capital were compared between White/Caucasian…
Descriptors: College Freshmen, Structural Equation Models, Statistical Inference, Social Capital
Peer reviewed Peer reviewed
Knapp, Thomas R. – Mid-Western Educational Researcher, 1999
Presents an opinion on the appropriate use of significance tests, especially in the context of regression analysis, the most commonly encountered statistical technique in education and related disciplines. Briefly discusses the appropriate use of power analysis. Contains 47 references. (Author/SV)
Descriptors: Data Interpretation, Educational Research, Effect Size, Hypothesis Testing
Madhere, Serge – 1986
One of the most appropriate quasiexperimental approaches to compensatory education is the regression-discontinuity design. However, it remains underutilized, in part because of the need to clarify the link between the mathematical model and administrative decision-making. This paper explains the derivation of a program efficiency index congruent…
Descriptors: Compensatory Education, Cutting Scores, Effect Size, Elementary Education