Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 11 |
Since 2016 (last 10 years) | 25 |
Since 2006 (last 20 years) | 61 |
Descriptor
Source
Author
Thompson, Bruce | 3 |
Benjamin W. Domingue | 2 |
Deke, John | 2 |
Joshua B. Gilbert | 2 |
Luke W. Miratrix | 2 |
Mridul Joshi | 2 |
Onwuegbuzie, Anthony J. | 2 |
Ruscio, John | 2 |
Wagenmakers, Eric-Jan | 2 |
Adelle K. Sturgell | 1 |
Allen, Jeff | 1 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 3 |
Teachers | 1 |
Location
Arizona | 1 |
California | 1 |
Canada (Montreal) | 1 |
Florida | 1 |
Illinois | 1 |
Louisiana | 1 |
Maryland | 1 |
Missouri | 1 |
Netherlands | 1 |
Pennsylvania | 1 |
South Korea | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Study… | 1 |
What Works Clearinghouse Rating
Hansen, Spencer; Rice, Kenneth – Research Synthesis Methods, 2022
Meta-analysis of proportions is conceptually simple: Faced with a binary outcome in multiple studies, we seek inference on some overall proportion of successes/failures. Under common effect models, exact inference has long been available, but is not when we more realistically allow for heterogeneity of the proportions. Instead a wide range of…
Descriptors: Meta Analysis, Effect Size, Statistical Inference, Intervals
Ethan R. Van Norman; David A. Klingbeil; Adelle K. Sturgell – Grantee Submission, 2024
Single-case experimental designs (SCEDs) have been used with increasing frequency to identify evidence-based interventions in education. The purpose of this study was to explore how several procedural characteristics, including within-phase variability (i.e., measurement error), number of baseline observations, and number of intervention…
Descriptors: Research Design, Case Studies, Effect Size, Error of Measurement
Mathur, Maya B.; VanderWeele, Tyler J. – Research Synthesis Methods, 2021
Meta-regression analyses usually focus on estimating and testing differences in average effect sizes between individual levels of each meta-regression covariate in turn. These metrics are useful but have limitations: they consider each covariate individually, rather than in combination, and they characterize only the mean of a potentially…
Descriptors: Regression (Statistics), Meta Analysis, Effect Size, Computation
Brannick, Michael T.; French, Kimberly A.; Rothstein, Hannah R.; Kiselica, Andrew M.; Apostoloski, Nenad – Research Synthesis Methods, 2021
Tolerance intervals provide a bracket intended to contain a percentage (e.g., 80%) of a population distribution given sample estimates of the mean and variance. In random-effects meta-analysis, tolerance intervals should contain researcher-specified proportions of underlying population effect sizes. Using Monte Carlo simulation, we investigated…
Descriptors: Meta Analysis, Credibility, Intervals, Effect Size
Jane E. Miller – Numeracy, 2023
Students often believe that statistical significance is the only determinant of whether a quantitative result is "important." In this paper, I review traditional null hypothesis statistical testing to identify what questions inferential statistics can and cannot answer, including statistical significance, effect size and direction,…
Descriptors: Statistical Significance, Holistic Approach, Statistical Inference, Effect Size
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Journal of Educational and Behavioral Statistics, 2025
Analyzing heterogeneous treatment effects (HTEs) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and preintervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics
Deke, John; Finucane, Mariel; Thal, Daniel – National Center for Education Evaluation and Regional Assistance, 2022
BASIE is a framework for interpreting impact estimates from evaluations. It is an alternative to null hypothesis significance testing. This guide walks researchers through the key steps of applying BASIE, including selecting prior evidence, reporting impact estimates, interpreting impact estimates, and conducting sensitivity analyses. The guide…
Descriptors: Bayesian Statistics, Educational Research, Data Interpretation, Hypothesis Testing
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Annenberg Institute for School Reform at Brown University, 2024
Analyzing heterogeneous treatment effects (HTE) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and pre-intervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics
Luo, Wen; Li, Haoran; Baek, Eunkyeng; Chen, Siqi; Lam, Kwok Hap; Semma, Brandie – Review of Educational Research, 2021
Multilevel modeling (MLM) is a statistical technique for analyzing clustered data. Despite its long history, the technique and accompanying computer programs are rapidly evolving. Given the complexity of multilevel models, it is crucial for researchers to provide complete and transparent descriptions of the data, statistical analyses, and results.…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Prediction, Research Problems
Taber, Keith S. – Chemistry Education Research and Practice, 2020
This comment discusses some issues about the use and reporting of experimental studies in education, illustrated by a recently published study that claimed (i) that an educational innovation was effective despite outcomes not reaching statistical significance, and (ii) that this refuted the findings of an earlier study. The two key issues raised…
Descriptors: Chemistry, Educational Innovation, Statistical Significance, Statistical Inference
Batley, Prathiba Natesan; Minka, Tom; Hedges, Larry Vernon – Grantee Submission, 2020
Immediacy is one of the necessary criteria to show strong evidence of treatment effect in single case experimental designs (SCEDs). With the exception of Natesan and Hedges (2017) no inferential statistical tool has been used to demonstrate or quantify it until now. We investigate and quantify immediacy by treating the change-points between the…
Descriptors: Bayesian Statistics, Monte Carlo Methods, Statistical Inference, Markov Processes
Duxbury, Scott W. – Sociological Methods & Research, 2023
This study shows that residual variation can cause problems related to scaling in exponential random graph models (ERGM). Residual variation is likely to exist when there are unmeasured variables in a model--even those uncorrelated with other predictors--or when the logistic form of the model is inappropriate. As a consequence, coefficients cannot…
Descriptors: Graphs, Scaling, Research Problems, Models
Parsley, Kathryn M.; Daigle, Bernie J.; Sabel, Jaime L. – CBE - Life Sciences Education, 2022
Plant awareness disparity (PAD, formerly plant blindness) is the idea that students tend not to notice or appreciate the plants in their environment. This phenomenon often leads to naïve points of view, such as plants are not important or do not do anything for humans. There are four components of PAD: attitude (not liking plants), attention (not…
Descriptors: Test Construction, Test Validity, Test Reliability, Plants (Botany)
Walters, Glenn D. – International Journal of Social Research Methodology, 2019
Identifying mediators in variable chains as part of a causal mediation analysis can shed light on issues of causation, assessment, and intervention. However, coefficients and effect sizes in a causal mediation analysis are nearly always small. This can lead those less familiar with the approach to reject the results of causal mediation analysis.…
Descriptors: Effect Size, Statistical Analysis, Sampling, Statistical Inference
Marsman, Maarten; Wagenmakers, Eric-Jan – Educational and Psychological Measurement, 2017
P values have been critiqued on several grounds but remain entrenched as the dominant inferential method in the empirical sciences. In this article, we elaborate on the fact that in many statistical models, the one-sided "P" value has a direct Bayesian interpretation as the approximate posterior mass for values lower than zero. The…
Descriptors: Bayesian Statistics, Statistical Inference, Probability, Statistical Analysis