NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Assessments and Surveys
NEO Personality Inventory1
What Works Clearinghouse Rating
Showing 1 to 15 of 91 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
R. K. Kapila Vani; P. Jayashree – Education and Information Technologies, 2025
Emotions of learners are fundamental and significant in e-learning as they encourage learning. Machine learning models are presented in the literature to look at how emotions may affect e-learning results that are improved and optimized. Nevertheless, the models that have been suggested so far are appropriate for offline mode, whereby data for…
Descriptors: Electronic Learning, Psychological Patterns, Artificial Intelligence, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chaewon Lee; Lan Luo; Shelbi L. Kuhlmann; Robert D. Plumley; Abigail T. Panter; Matthew L. Bernacki; Jeffrey A. Greene; Kathleen M. Gates – Journal of Learning Analytics, 2025
The increasing use of learning management systems (LMSs) generates vast amounts of clickstream data, opening new avenues for predicting learner performance. Traditionally, LMS predictive analytics have relied on either supervised machine learning or Markov models to classify learners based on predicted learning outcomes. Machine learning excels at…
Descriptors: Electronic Learning, Prediction, Data Analysis, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Qin Ni; Yifei Mi; Yonghe Wu; Liang He; Yuhui Xu; Bo Zhang – IEEE Transactions on Learning Technologies, 2024
Learning style recognition is an indispensable part of achieving personalized learning in online learning systems. The traditional inventory method for learning style identification faces the limitations such as subject and static characteristics. Therefore, an automatic and reliable learning style recognition mechanism is designed in this…
Descriptors: Cognitive Style, Electronic Learning, Prediction, Identification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Davies, Randall; Allen, Gove; Albrecht, Conan; Bakir, Nesrin; Ball, Nick – Education Sciences, 2021
Analyzing the learning analytics from a course provides insights that can impact instructional design decisions. This study used educational data mining techniques, specifically a longitudinal k-means cluster analysis, to identify the strategies students used when completing the online portion of an online flipped spreadsheet course. An analysis…
Descriptors: Data Analysis, Identification, Learning Strategies, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona; Qi, Wanxue – Education and Information Technologies, 2023
Interactive learning is a two-way learning method of learners independently by using computer and network technology. In the interactive relationships, interactive learning plays a role for learners to achieve the learning purpose, interactive learning has become an important effect of online learning, but it also has many problems that need to be…
Descriptors: Foreign Countries, Identification, Interaction, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Mason C. McNair; Chelsea M. Sexton; Mark Zenoble – Journal of College Science Teaching, 2023
Following the switch to remote online teaching in the wake of the COVID-19 pandemic, the plant taxonomy course at the University of Georgia (UGA) switched to iNaturalist for the specimen collection portion of the course requirements. Building off extant rubrics, the instructors designed project guidelines for a fully online plant collection…
Descriptors: Plants (Botany), Electronic Learning, Taxonomy, Course Content
Peer reviewed Peer reviewed
Direct linkDirect link
Lucia Uguina-Gadella; Iria Estevez-Ayres; Jesus Arias Fisteus; Carlos Alario-Hoyos; Carlos Delgado Kloos – IEEE Transactions on Learning Technologies, 2024
Students learn not only directly from their teachers and books, but also by using their computers, tablets, and phones. Monitoring these learning environments creates new opportunities for teachers to track students' progress. In particular, this article is based on gathering real-time events as students interact with learning tools and materials…
Descriptors: Predictor Variables, Academic Achievement, Computer Assisted Instruction, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Lonneke Boels; Enrique Garcia Moreno-Esteva; Arthur Bakker; Paul Drijvers – International Journal of Artificial Intelligence in Education, 2024
As a first step toward automatic feedback based on students' strategies for solving histogram tasks we investigated how strategy recognition can be automated based on students' gazes. A previous study showed how students' task-specific strategies can be inferred from their gazes. The research question addressed in the present article is how data…
Descriptors: Eye Movements, Learning Strategies, Problem Solving, Automation
Peer reviewed Peer reviewed
Direct linkDirect link
Abdessamad Chanaa; Nour-eddine El Faddouli – Smart Learning Environments, 2024
The recommendation is an active area of scientific research; it is also a challenging and fundamental problem in online education. However, classical recommender systems usually suffer from item cold-start issues. Besides, unlike other fields like e-commerce or entertainment, e-learning recommendations must ensure that learners have the adequate…
Descriptors: Artificial Intelligence, Prerequisites, Metadata, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Luis, Ricardo M. Meira Ferrão; Llamas-Nistal, Martin; Iglesias, Manuel J. Fernández – Smart Learning Environments, 2022
E-learning students have a tendency to get demotivated and easily dropout from online courses. Refining the learners' involvement and reducing dropout rates in these e-learning based scenarios is the main drive of this study. This study also shares the results obtained and crafts a comparison with new and emerging commercial solutions. In a…
Descriptors: Artificial Intelligence, Identification, Electronic Learning, Dropout Characteristics
Michael L. Chrzan; Francis A. Pearman; Benjamin W. Domingue – Annenberg Institute for School Reform at Brown University, 2025
The increasing rate of permanent school closures in U.S. public school districts presents unprecedented challenges for administrators and communities alike. This study develops an early-warning indicator model to predict mass closure events -- defined as a district closing at least 10% of its schools -- five years in advance. Leveraging…
Descriptors: Artificial Intelligence, Electronic Learning, School Districts, School Closing
Peer reviewed Peer reviewed
Direct linkDirect link
Azzi, Ibtissam; Jeghal, Adil; Radouane, Abdelhay; Yahyaouy, Ali; Tairi, Hamid – Education and Information Technologies, 2020
In E-Learning Systems, the automatic detection of the learners' learning styles provides a concrete way for instructors to personalize the learning to be made available to learners. The classification techniques are the most used techniques to automatically detect the learning styles by processing data coming from learner interactions with the…
Descriptors: Classification, Prediction, Identification, Cognitive Style
Peer reviewed Peer reviewed
Direct linkDirect link
Zifeng Liu; Wanli Xing; Xinyue Jiao; Chenglu Li; Wangda Zhu – Education and Information Technologies, 2025
The ability of large language models (LLMs) to generate code has raised concerns in computer science education, as students may use tools like ChatGPT for programming assignments. While much research has focused on higher education, especially for languages like Java and Python, little attention has been given to K-12 settings, particularly for…
Descriptors: High School Students, Coding, Artificial Intelligence, Electronic Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Georgakopoulos, Ioannis; Chalikias, Miltiadis; Zakopoulos, Vassilis; Kossieri, Evangelia – Education Sciences, 2020
Our modern era has brought about radical changes in the way courses are delivered and various teaching methods are being introduced to answer the purpose of meeting the modern learning challenges. On that account, the conventional way of teaching is giving place to a teaching method which combines conventional instructional strategies with…
Descriptors: Academic Failure, Blended Learning, Learner Engagement, Student Participation
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Zhe – International Journal of Web-Based Learning and Teaching Technologies, 2023
As a stakeholder group in the promotion of basic education informatization, parents' attitudes towards children's informatization learning is an important factor affecting the smooth development of school informatization teaching. Based on the classic convolutional neural network and CK+ dataset, this paper proposes a convolutional neural network…
Descriptors: Parent Attitudes, Information Seeking, Learning Processes, Teaching Methods
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7