NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Yang – Technology, Knowledge and Learning, 2023
Learning affective state is determinate to online learning. Different affective states are associated with different online learning behaviors. Given the behavioral indicators of different affective states are still to be explored, this study constructed a data-driven online learning affective state detector by analyzing the learning log data of…
Descriptors: Electronic Learning, Affective Behavior, Learning Management Systems, Measures (Individuals)
Peer reviewed Peer reviewed
Direct linkDirect link
Zhou, Yizhuo; Zhao, Jin; Zhang, Jianjun – Interactive Learning Environments, 2023
On e-learning platforms, most e-learners didn't complete the course successfully. It means that reducing dropout is a critical problem for the sustainability of e-learning. This paper aims to establish a predictive model to describe e-learners' dropout behavior, which can help the commercial e-learning platforms to make appropriate interventions…
Descriptors: Electronic Learning, Prediction, Dropouts, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Imhof, Christof; Comsa, Ioan-Sorin; Hlosta, Martin; Parsaeifard, Behnam; Moser, Ivan; Bergamin, Per – IEEE Transactions on Learning Technologies, 2023
Procrastination, the irrational delay of tasks, is a common occurrence in online learning. Potential negative consequences include a higher risk of drop-outs, increased stress, and reduced mood. Due to the rise of learning management systems (LMS) and learning analytics (LA), indicators of such behavior can be detected, enabling predictions of…
Descriptors: Prediction, Time Management, Electronic Learning, Artificial Intelligence