NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Forrow, Lauren; Starling, Jennifer; Gill, Brian – Regional Educational Laboratory Mid-Atlantic, 2023
The Every Student Succeeds Act requires states to identify schools with low-performing student subgroups for Targeted Support and Improvement or Additional Targeted Support and Improvement. Random differences between students' true abilities and their test scores, also called measurement error, reduce the statistical reliability of the performance…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Regional Educational Laboratory Mid-Atlantic, 2023
This Snapshot highlights key findings from a study that used Bayesian stabilization to improve the reliability (long-term stability) of subgroup proficiency measures that the Pennsylvania Department of Education (PDE) uses to identify schools for Targeted Support and Improvement (TSI) or Additional Targeted Support and Improvement (ATSI). The…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Regional Educational Laboratory Mid-Atlantic, 2023
The "Stabilizing Subgroup Proficiency Results to Improve the Identification of Low-Performing Schools" study used Bayesian stabilization to improve the reliability (long-term stability) of subgroup proficiency measures that the Pennsylvania Department of Education (PDE) uses to identify schools for Targeted Support and Improvement (TSI)…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Choi, Kilchan; Kim, Jinok – Journal of Educational and Behavioral Statistics, 2019
This article proposes a latent variable regression four-level hierarchical model (LVR-HM4) that uses a fully Bayesian approach. Using multisite multiple-cohort longitudinal data, for example, annual assessment scores over grades for students who are nested within cohorts within schools, the LVR-HM4 attempts to simultaneously model two types of…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Longitudinal Studies, Cohort Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hodges, Jaret; McIntosh, Jason; Gentry, Marcia – Journal of Advanced Academics, 2017
High-potential students from low-income families are at an academic disadvantage compared with their more affluent peers. To address this issue, researchers have suggested novel approaches to mitigate gaps in student performance, including out-of-school enrichment programs. Longitudinal mixed effects modeling was used to analyze the growth of…
Descriptors: After School Programs, Enrichment Activities, Academic Achievement, High Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
May, Henry – Society for Research on Educational Effectiveness, 2014
Interest in variation in program impacts--How big is it? What might explain it?--has inspired recent work on the analysis of data from multi-site experiments. One critical aspect of this problem involves the use of random or fixed effect estimates to visualize the distribution of impact estimates across a sample of sites. Unfortunately, unless the…
Descriptors: Educational Research, Program Effectiveness, Research Problems, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hung-Yu; Wang, Wen-Chung – Educational and Psychological Measurement, 2014
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Computation, Test Reliability