Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 8 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 18 |
Descriptor
Chemical Engineering | 25 |
Computer Simulation | 25 |
Engineering Education | 25 |
Teaching Methods | 9 |
Computer Software | 7 |
Undergraduate Students | 7 |
Higher Education | 6 |
Science Instruction | 6 |
Chemistry | 5 |
Educational Technology | 5 |
Computation | 3 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 23 |
Reports - Descriptive | 14 |
Reports - Research | 9 |
Speeches/Meeting Papers | 3 |
Reports - Evaluative | 2 |
Guides - Classroom - Teacher | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 14 |
Postsecondary Education | 13 |
Audience
Practitioners | 4 |
Teachers | 4 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Michael P. Howard; Symone L. M. Alexander – Chemical Engineering Education, 2024
Chemical engineers must learn to connect concepts across vastly different scales, spanning from molecular structures to industrial processes. Here, we explore the use of a virtual-reality simulation with a companion video of an experiment to help undergraduate students connect nanoscale fundamentals to macroscale engineering observations.
Descriptors: Chemical Engineering, Computer Simulation, Video Technology, Science Experiments
Serkan Solmaz; Liesbeth Kester; Tom Van Gerven – Education and Information Technologies, 2024
Virtual reality has become a significant asset to diversify the existing toolkit supporting engineering education and training. The cognitive and behavioral advantages of virtual reality (VR) can help lecturers reduce entry barriers to concepts that students struggle with. Computational fluid dynamics (CFD) simulations are imperative tools…
Descriptors: Computer Simulation, Educational Environment, Engineering Education, Technology Uses in Education
Roman, Claudia; Delgado, Miguel A.; Garcia-Morales, Moises – Chemical Engineering Education, 2021
The benefits of using Microsoft Excel built-in functions in an undergraduate Multistage Separations course are analyzed based on 15 years of experience teaching mass transfer in Chemical Engineering programs at both the Bachelor's and Master's levels. Eight reasons for using spreadsheets in a Mass Transfer virtual course are given. Through the…
Descriptors: Computation, Spreadsheets, Undergraduate Students, Engineering Education
Udeozor, Chioma; Toyoda, Ryo; Russo Abegão, Fernando; Glassey, Jarka – Higher Education Pedagogies, 2021
Virtual Reality (VR) games and simulations are increasingly being used to provide highly interactive, engaging and contextual learning experiences for learners in otherwise risk-prone environments, such as those obtained in chemical engineering and industrial domains. Understanding the intention of users towards this technology for education and…
Descriptors: Computer Simulation, Game Based Learning, Chemical Engineering, Engineering Education
Caño de las Heras, Simoneta; Kensington-Miller, Barbara; Young, Brent; Gonzalez, Vicente; Krühne, Ulrich; Mansouri, Seyed Soheil; Baroutian, Saeid – Journal of Chemical Education, 2021
Engineering education is facing major challenges as it seeks to provide necessary and robust practical experience for all its undergraduate students. The limitation of resources (capital and operational), the increasing number of engineering students and the need to provide safe, up-to-date laboratory experiences have become global issues.…
Descriptors: Virtual Classrooms, Computer Simulation, Technology Integration, Science Laboratories
Falconer, John L.; Hendren, Neil – Chemical Engineering Education, 2021
A virtual catalytic reactor laboratory (VCRL) experiment, which can be used in most browsers, is described. Students select feed conditions and use the VCRL to take data for a gas-phase catalytic reaction and fit kinetic parameters to a Langmuir-Hinshelwood rate expression. The VCRL contains instructions, equipment descriptions, an animated…
Descriptors: Science Instruction, Computer Simulation, Laboratory Experiments, Laboratory Equipment
Motejlek, Jiri; Alpay, Esat – IEEE Transactions on Learning Technologies, 2021
This article presents and analyzes existing taxonomies of virtual and augmented reality and demonstrates knowledge gaps and mixed terminology, which may cause confusion among educators, researchers, and developers. Several such occasions of confusion are presented. A methodology is then presented to construct a taxonomy of virtual reality and…
Descriptors: Taxonomy, Teaching Methods, Artificial Intelligence, Educational Objectives
Jauregi-Ondarra, Kristi; Christoforou, Maria; Boglou, Dimitrios – Research-publishing.net, 2022
Computer-mediated communication tools facilitate international collaboration projects between foreign language learners and peers abroad (O'Dowd, 2018). Social Virtual Reality (VR) applications allow for synchronous interactions and task-based communication in which learners can experience telepresence and immersion and conversate in a foreign…
Descriptors: Computer Mediated Communication, International Cooperation, Cooperative Learning, Second Language Learning
Battaglia, Onofrio Rosario; Di Paola, Benedetto; Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio – Research in Science Education, 2019
Two 20-h modelling-based workshops focused on the explanation of thermally activated phenomena were held at the University of Palermo, Italy, during the Academic Year 2014-2015. One of them was conducted by applying an inquiry-based approach, while the other, still based on laboratory and modelling activities, was not focused on inquiry.…
Descriptors: Workshops, Engineering Education, Chemical Engineering, Undergraduate Students
Falconer, John L.; Nicodemus, Garret D. – Chemical Engineering Education, 2014
Interactive Mathematica simulations with graphical displays of system behavior are an excellent addition to chemical engineering courses. The Manipulate command in Mathematica creates on-screen controls that allow users to change system variables and see the graphical output almost instantaneously. They can be used both in and outside class. More…
Descriptors: Computer Simulation, Mathematics, Engineering Education, Chemical Engineering
Silva, Carlos M.; Vaz, Raquel V.; Santiago, Ana S.; Lito, Patricia F. – Chemical Engineering Education, 2011
The importance of distillation in the separation field prompts the inclusion of distillation experiments in the chemical engineering curricula. This work describes the performance of an Oldershaw column in the rectification of a cyclohexane/n-heptane mixture. Total reflux distillation, continuous rectification under partial reflux, and batch…
Descriptors: Chemical Engineering, Science Experiments, Chemistry, Scientific Concepts
Chirdon, William M. – Chemical Engineering Education, 2010
This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…
Descriptors: Plastics, Computer Simulation, Internet, Educational Technology
Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q. – Chemical Engineering Education, 2009
Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…
Descriptors: Scientific Concepts, Chemical Engineering, Engineering Education, Calculus
Evans, Steven T.; Huang, Xinqun; Cramer, Steven M. – Chemical Engineering Education, 2010
The commercial simulator Aspen Chromatography was employed to study and optimize an important new industrial separation process, weak partitioning chromatography. This case study on antibody purification was implemented in a chromatographic separations course. Parametric simulations were performed to investigate the effect of operating parameters…
Descriptors: Computer Simulation, Biotechnology, Problem Based Learning, Courses
Using Simulation Module, PCLAB, for Steady State Disturbance Sensitivity Analysis in Process Control
Ali, Emad; Idriss, Arimiyawo – Chemical Engineering Education, 2009
Recently, chemical engineering education moves towards utilizing simulation soft wares to enhance the learning process especially in the field of process control. These training simulators provide interactive learning through visualization and practicing which will bridge the gap between the theoretical abstraction of textbooks and the…
Descriptors: Engineering Education, Chemical Engineering, Computer Simulation, Science Instruction
Previous Page | Next Page »
Pages: 1 | 2