NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Samantha Yanosko; Grant Valentine; Matthew W. Liberatore – Chemical Engineering Education, 2025
An interactive textbook for a material and energy balances course measured over 1,300 reading interactions and hundreds of auto-graded problems per student each term. Specifically, seven cohorts and 601 students completed over 700,000 reading interactions and 150,000 auto-graded problems. Median reading participation was over 93%. Median correct…
Descriptors: Chemical Engineering, Textbooks, Computer Uses in Education, Grading
Peer reviewed Peer reviewed
Direct linkDirect link
Yenkie, Kirti Maheshkumar – Chemical Engineering Education, 2020
The current business trends, such as Industry 4.0, require a modern chemical engineer to know about programming, advanced computational tools, and holistic thinking. To this end, an integrated approach, where theoretical concepts are supplemented by computational lab-based exercises and team projects promoting "Design Thinking" is…
Descriptors: Chemical Engineering, Engineering Education, Undergraduate Students, College Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Silva, Carlos M.; Vaz, Raquel V.; Santiago, Ana S.; Lito, Patricia F. – Chemical Engineering Education, 2011
The importance of distillation in the separation field prompts the inclusion of distillation experiments in the chemical engineering curricula. This work describes the performance of an Oldershaw column in the rectification of a cyclohexane/n-heptane mixture. Total reflux distillation, continuous rectification under partial reflux, and batch…
Descriptors: Chemical Engineering, Science Experiments, Chemistry, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Heldt, Caryn L. – Chemical Engineering Education, 2012
Inter-group peer evaluation through wikis was implemented as a method for senior capstone design teams to improve writing and the critical evaluation of data. Each group was evaluated by peers using a qualitative discussion and evaluated quantitatively by instructors. Students had an increased interest in contributing to online knowledge centers,…
Descriptors: Lifelong Learning, Curriculum, Chemical Engineering, Peer Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Coronell, Daniel G.; Hariri, M. Hossein – Chemical Engineering Education, 2009
Computer programming in undergraduate engineering education all too often begins and ends with the freshman programming course. Improvements in computer technology and curriculum revision have improved this situation, but often at the expense of the students' learning due to the use of commercial "black box" software. This paper describes the…
Descriptors: Chemical Engineering, Engineering Education, Undergraduate Study, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Koretsky, Milo D.; Kelly, Christine; Gummer, Edith – Chemical Engineering Education, 2011
The instructional design and the corresponding research on student learning of two virtual laboratories that provide an engineering task situated in an industrial context are described. In this problem-based learning environment, data are generated dynamically based on each student team's distinct choices of reactor parameters and measurements.…
Descriptors: Engineering Education, Research Design, Instructional Design, Problem Based Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Le Roux, G. A. C.; Reis, G. B.; de Jesus, C. D. F.; Giordano, R. C.; Cruz, A. J. G.; Moreira, P. F., Jr.; Nascimento, C. A. O.; Loureiro, L. V. – Chemical Engineering Education, 2010
This paper describes the use of weblabs--web based experiments--for cooperative learning by students working together from two different locations to conduct experiments and write reports.
Descriptors: Cooperative Learning, Chemical Engineering, Teaching Methods, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Liberatore, Matthew W. – Chemical Engineering Education, 2010
YouTube Fridays is a teaching tool that devotes the first five minutes of class each Friday to a YouTube video related to the course. Students select the videos, which expand the class's educational content in courses such as thermodynamics and material and energy balances. From assessments of two pilot studies using YouTube Fridays in Chemical…
Descriptors: Video Technology, Thermodynamics, Chemical Engineering, Educational Technology
Damatto, T.; Maegava, L. M.; Filho, R. Maciel – 2000
In all the Brazilian Universities involved with the project "Prodenge-Reenge", the main objective is to improve teaching and learning procedures for the engineering disciplines. The Chemical Engineering College of Campinas State University focused its effort on the use of engineering softwares. The work developed by this project has…
Descriptors: Chemical Engineering, Computer Software, Computer Uses in Education, Educational Technology
Peer reviewed Peer reviewed
Roat, S. D.; Melsheimer, S. S. – Chemical Engineering Education, 1987
Describes a single input/single output feedback control system design program for IBM PC and compatible microcomputers. Uses a heat exchanger temperature control loop to illustrate the various applications of the program. (ML)
Descriptors: Chemical Engineering, College Science, Computer Assisted Instruction, Computer Uses in Education
Peer reviewed Peer reviewed
Seider, Warren D. – Chemical Engineering Education, 1988
Traces the evolution of instructional computing in the design and control courses. Discusses process design, process control, and expert systems. Concludes that the computing tools for undergraduate instruction are mostly in step with design and control practice in chemical engineering. (CW)
Descriptors: Chemical Engineering, College Science, Computer Assisted Instruction, Computer Uses in Education
Peer reviewed Peer reviewed
Shacham, Mordechai; Cutlip, Michael B. – Chemical Engineering Education, 1988
Presents three specific examples of chemical engineering problems which can be interactively solved on personal computers with commercially available software. Illustrates the potential impact of interactive problem solving on chemical engineering. Discusses how this has been accomplished at Ben Gurion University (Israel) and the University of…
Descriptors: Chemical Engineering, Chemistry, College Science, Computer Software
Peer reviewed Peer reviewed
Roberge, P. R. – Chemical Engineering Education, 1990
Discussed are expert systems development and teaching, the representation and processing of knowledge, knowledge representation in chemical engineering, and expert systems in chemical engineering. The seven phases of expert system development are illustrated. (CW)
Descriptors: Artificial Intelligence, Chemical Engineering, Chemistry, Cognitive Development
Peer reviewed Peer reviewed
Takoudis, Christos G. – Chemical Engineering Education, 1987
Describes a 15-week course in the fundamentals of microelectronics processing in chemical engineering, which emphasizes the use of very large scale integration (VLSI). Provides a listing of the topics covered in the course outline, along with a sample of some of the final projects done by students. (TW)
Descriptors: Chemical Engineering, College Science, Computer Uses in Education, Course Content
Peer reviewed Peer reviewed
Rockstraw, David A.; And Others – Chemical Engineering Education (CEE), 1997
Describes a chemical engineering course curriculum on process design, analysis, and simulation. Includes information regarding the sequencing of engineering design classes and the location of the classes within the degree program at New Mexico State University. Details of course content are provided. (DDR)
Descriptors: Chemical Engineering, College Curriculum, Computer Uses in Education, Course Content
Previous Page | Next Page ยป
Pages: 1  |  2