Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 6 |
Descriptor
Curriculum Design | 16 |
Engineering Education | 16 |
Engineering Technology | 16 |
Technical Education | 8 |
Curriculum Development | 7 |
Engineering | 6 |
Higher Education | 6 |
College Science | 5 |
Undergraduate Study | 5 |
Instructional Design | 4 |
Instructional Development | 4 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 14 |
Reports - Descriptive | 8 |
Opinion Papers | 3 |
Reports - Research | 3 |
Guides - Classroom - Teacher | 2 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 4 |
Postsecondary Education | 3 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Practitioners | 2 |
Teachers | 1 |
Location
Connecticut | 1 |
Georgia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Wolff, Karin; Luckett, Kathy – Teaching in Higher Education, 2013
In order to design two distinct engineering qualification levels for an existing University of Technology programme, empirical evidence based on the current diploma is necessary to illuminate the nature of and the relationship between the "contextual" and "conceptual" elements underpinning a multidisciplinary engineering…
Descriptors: Engineering Education, Engineering Technology, Interdisciplinary Approach, Educational Sociology
Kopelevich, Dmitry I.; Ziegler, Kirk J.; Lindner, Angela S.; Bonzongo, Jean-Claude J. – Chemical Engineering Education, 2012
Because rapid growth of nanotechnology is expected to lead to intentional and non-intentional releases, future engineers will need to minimize negative environmental and health impacts of nanomaterials. We developed two upper-level undergraduate courses centered on life-cycle assessment of nanomaterials. The first part of the course sequence…
Descriptors: Curriculum Design, Engineering Education, Higher Education, Science Education
Song, Ting; Becker, Kurt – Technology and Engineering Teacher, 2013
Science, technology, engineering, and mathematics (STEM) educators are facing the challenge of attracting more students. The disparity between the need for engineers and the enrollment of engineering students is growing (Genalo, Bruning, & Adams, 2000), and career aspirations of high school students are inconsistent with the employment…
Descriptors: Engineering Education, Engineering Technology, Design, Middle School Students
Milanovic, Ivana; Eppes, Tom A.; Girouard, Janice; Townsend, Lee – Journal of College Teaching & Learning, 2010
This paper presents a retention-oriented approach to the educational value stream within the STEM undergraduate area. Faced with several strategic challenges and opportunities, a Flex Advantage Plan was developed to enhance the undergraduate engineering technology programs and better utilize the curricular flexibilities inherent in the current…
Descriptors: Majors (Students), Undergraduate Students, Engineering Technology, Enrollment Trends
Mentzer, Nathan – Journal of STEM Teacher Education, 2011
This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…
Descriptors: Technology Education, Engineering Education, Instructional Design, Barriers
Henry, Holly R.; Tawfik, Andrew A.; Jonassen, David H.; Winholtz, Robert A.; Khanna, Sanjeev – Interdisciplinary Journal of Problem-based Learning, 2012
This qualitative case study examines the initial implementation of a problem-based version of an undergraduate course in materials science for the purpose of identifying areas of improvement to the curriculum prior to a planned second implementation. The course was designed around problems that students work in small teams to solve under the…
Descriptors: Undergraduate Students, Participant Satisfaction, Student Attitudes, Science Materials

Waintraub, Jack L. – Industry and Higher Education, 1997
The holistic approach to restructuring engineering technology education at the New Jersey Center for Advanced Technological Education includes partnerships for articulated programs, recruitment and retention of underrepresented groups, involvement of industrial personal, and faculty development in innovative instructional methods. (SK)
Descriptors: Curriculum Design, Educational Change, Engineering Education, Engineering Technology
Gershon, J. J. – Engineering Education, 1977
Summarizes curriculum guidelines for the following engineering technologies: chemical, industrial, mining, petroleum, nuclear, civil, mechanical, electrical, automotive, and manufacturing. In a few years, these Engineering Council for Professional Development committee guidelines are intended to become the criteria by which programs will be judged…
Descriptors: Curriculum Design, Curriculum Development, Engineering Education, Engineering Technology

Friedman, Edward A. – Liberal Education, 1979
The impact of technology on higher education from increasingly complex computers and technological systems will cause higher education to include technological courses in the liberal arts curriculum, prepare liberal arts students for careers in nontraditional areas in which technology is an important component, and broaden the base of engineering…
Descriptors: Curriculum, Curriculum Design, Curriculum Development, Educational Change
Cheshier, Stephen R. – Engineering Education, 1985
Compares and contrasts engineering (theoretical/abstract) and engineering technology (practical/application-oriented) baccalaureate programs. Although the perpetuated independent development of the programs has created a negative impact on the profession, changes in accreditation criteria/categories might help engineering technology programs…
Descriptors: Accreditation (Institutions), Bachelors Degrees, Credentials, Curriculum Design
Kenyon, Richard A. – Engineering Education, 1985
Discusses differences and similarities of engineering (theoretical/abstract) and engineering technology (practical/application-oriented) programs which the author believes are artificially divided. The fields overlap and should be reunited, but this will need more effective interaction among all engineering professionals and revision of…
Descriptors: Accreditation (Institutions), Bachelors Degrees, Credentials, Curriculum Design

Weathers, Pamela J. – Journal of Chemical Education, 1988
Explores a graduate level bioprocess engineering course in protein purification and downstream processing. Designed to provide students with hands-on training in the design and implementation of product processing for the biotechnology industry. Includes syllabus and plan of study. (MVL)
Descriptors: Biochemistry, College Science, Course Descriptions, Curriculum Design
Ernst, Edward W. – Engineering Education, 1989
Discusses the Undergraduate Curriculum Development in Engineering program. Provides a short history of the program. Describes 10 curriculum projects ranging from engineering design to industry participation. Each program is encouraged to develop: analytical ability, ability to innovate and synthesize, integrating ability, and contextual…
Descriptors: College Science, Curriculum Design, Curriculum Development, Engineering
Morgan, Robert P. – Engineering Education, 1989
Compares two engineering education reports which urge the following needs and emphases: attract and retain minorities, retain students already in engineering school, and allow students to enter the engineering program at various levels. Criticizes the Office of Technology Assessment's report and supplies prescriptions for the future. (MVL)
Descriptors: College Science, Curriculum Design, Curriculum Development, Curriculum Evaluation
Troxler, G. William – Engineering Education, 1989
Discusses the relative roles of engineering and engineering technology. Questions where the baccalaureate engineering technology graduate fits within the engineering field. Lists four methods to improve marketing engineering to potential students and the public. Presents job production and the international picture. (MVL)
Descriptors: College Science, Curriculum Design, Curriculum Development, Employment Opportunities
Previous Page | Next Page ยป
Pages: 1 | 2