Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 13 |
Descriptor
English (Second Language) | 14 |
Error Correction | 14 |
Natural Language Processing | 14 |
Second Language Learning | 13 |
Second Language Instruction | 12 |
Feedback (Response) | 8 |
Grammar | 8 |
Computer Software | 7 |
Computational Linguistics | 6 |
Teaching Methods | 6 |
Artificial Intelligence | 5 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 12 |
Reports - Research | 8 |
Reports - Descriptive | 4 |
Collected Works - Proceedings | 1 |
Dissertations/Theses -… | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 6 |
Postsecondary Education | 6 |
Elementary Education | 1 |
Grade 8 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Researchers | 1 |
Students | 1 |
Teachers | 1 |
Location
Asia | 1 |
Brazil | 1 |
Indonesia | 1 |
Japan (Tokyo) | 1 |
Taiwan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Test of English as a Foreign… | 1 |
What Works Clearinghouse Rating
Waad Alsaweed; Saad Aljebreen – International Journal of Computer-Assisted Language Learning and Teaching, 2024
Artificial intelligence revolution becomes a trend in most aspects of life. ChatGPT, an AI chatbot, has impacted various domains, including education and language learning. Enhancing writing abilities of ESL learners requires frequent writing practice and feedback, which ChatGPT can easily provide. However, ChatGPT's accuracy in identifying and…
Descriptors: Error Correction, Writing Instruction, Grammar, Morphemes
Shabnam Behzad – ProQuest LLC, 2024
Second language learners constitute a significant and expanding portion of the global population and there is a growing demand for tools that facilitate language learning and instruction across various levels and in different countries. The development of large language models (LLMs) has brought about a significant impact on the domains of natural…
Descriptors: Artificial Intelligence, Computer Software, Computational Linguistics, Second Language Learning
Huang, Ping-Yu; Tsao, Nai-Lung – Computer Assisted Language Learning, 2021
In this article, we describe an online English collocation explorer developed to help English L2 learners produce correct and appropriate collocations. Our tool, which is able to visually represent relevant correct/incorrect collocations on a single webpage, was designed based on the notions of collocation clusters and intercollocability proposed…
Descriptors: Second Language Learning, Second Language Instruction, English (Second Language), Error Correction
Mei-Rong Alice Chen – Educational Technology & Society, 2024
The increase in popularity of Generative Artificial Intelligence Chatbots, or GACs, has created a potentially fruitful opportunity to enhance teaching English as a Foreign Language (EFL). This study investigated the possibility of using GACs to give EFL students metalinguistic guidance (MG) in linguistics courses. Language competency gaps, a lack…
Descriptors: Metacognition, Transformative Learning, English (Second Language), Artificial Intelligence
Ranalli, Jim; Yamashita, Taichi – Language Learning & Technology, 2022
To the extent automated written corrective feedback (AWCF) tools such as Grammarly are based on sophisticated error-correction technologies, such as machine-learning techniques, they have the potential to find and correct more common L2 error types than simpler spelling and grammar checkers such as the one included in Microsoft Word (technically…
Descriptors: Error Correction, Feedback (Response), Computer Software, Second Language Learning
Miranty, Delsa; Widiati, Utami – Pegem Journal of Education and Instruction, 2021
Automated Writing Evaluation (AWE) has been considered a potential pedagogical technique that exploits technology to assist the students' writing. However, little attention has been devoted to examining students' perceptions of Grammarly use in higher education context. This paper aims to obtain information regarding the writing process and the…
Descriptors: Foreign Countries, Technology Uses in Education, Writing (Composition), Student Attitudes
Tono, Yukio; Satake, Yoshiho; Miura, Aika – ReCALL, 2014
This study reports on the results of classroom research investigating the effects of corpus use in the process of revising compositions in English as a foreign language. Our primary aim was to investigate the relationship between the information extracted from corpus data and how that information actually helped in revising different types of…
Descriptors: Computational Linguistics, Feedback (Response), Revision (Written Composition), English (Second Language)
Chukharev-Hudilainen, Evgeny; Saricaoglu, Aysel – Computer Assisted Language Learning, 2016
Expressing causal relations plays a central role in academic writing. While it is important that writing instructors assess and provide feedback on learners' causal discourse, it could be a very time-consuming task. In this respect, automated writing evaluation (AWE) tools may be helpful. However, to date, there have been no AWE tools capable of…
Descriptors: Discourse Analysis, Feedback (Response), Undergraduate Students, Accuracy
Dodigovic, Marina – International Journal of Artificial Intelligence in Education, 2013
This article focuses on the use of natural language processing (NLP) to facilitate second language learning within the context of academic English. It describes a full cycle of educational software development, from needs analysis to software testing. Two studies are included: 1) the needs analysis conducted to develop the Intelligent Sentence…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Second Language Learning, English (Second Language)
Blanchard, Daniel; Tetreault, Joel; Higgins, Derrick; Cahill, Aoife; Chodorow, Martin – ETS Research Report Series, 2013
This report presents work on the development of a new corpus of non-native English writing. It will be useful for the task of native language identification, as well as grammatical error detection and correction, and automatic essay scoring. In this report, the corpus is described in detail.
Descriptors: Language Tests, Second Language Learning, English (Second Language), Writing Tests
Granger, Sylviane; Kraif, Olivier; Ponton, Claude; Antoniadis, Georges; Zampa, Virginie – ReCALL, 2007
Learner corpora, electronic collections of spoken or written data from foreign language learners, offer unparalleled access to many hitherto uncovered aspects of learner language, particularly in their error-tagged format. This article aims to demonstrate the role that the learner corpus can play in CALL, particularly when used in conjunction with…
Descriptors: Metalinguistics, Natural Language Processing, English (Second Language), Second Language Learning
Chang, Yu-Chia; Chang, Jason S.; Chen, Hao-Jan; Liou, Hsien-Chin – Computer Assisted Language Learning, 2008
Previous work in the literature reveals that EFL learners were deficient in collocations that are a hallmark of near native fluency in learner's writing. Among different types of collocations, the verb-noun (V-N) one was found to be particularly difficult to master, and learners' first language was also found to heavily influence their collocation…
Descriptors: Sentence Structure, Verbs, Nouns, Foreign Countries
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis
Dodigovic, Marina – Language Awareness, 2003
Based on the statistical regularity of certain error types, an interlanguage grammar could be devised and applied to develop an intelligent computer tool, capable not only of identifying the typical errors in L2 student writing, but also of making adequate corrections. The purpose of the corrections is to make the student aware of the language…
Descriptors: Assignments, Sentences, Research and Development, Metalinguistics