NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)0
Since 2006 (last 20 years)14
Source
Multivariate Behavioral…74
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 74 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Oud, Johan H. L.; Folmer, Henk – Multivariate Behavioral Research, 2011
This article addresses modeling oscillation in continuous time. It criticizes Steele and Ferrer's article "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011), particularly the approximate estimation procedure applied. This procedure is the latent version of the local linear approximation procedure…
Descriptors: Structural Equation Models, Computation, Calculus, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
This article presents our response to Oud and Folmer's "Modeling Oscillation, Approximately or Exactly?" (2011), which criticizes aspects of our article, "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011). In this response, we present a conceptual explanation of the derivative-based estimation…
Descriptors: Calculus, Responses, Simulation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Zhong, Xiaoling; Yuan, Ke-Hai – Multivariate Behavioral Research, 2011
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Descriptors: Structural Equation Models, Simulation, Racial Identification, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Rozeboom, William W. – Multivariate Behavioral Research, 2009
The topic of this article is the interpretation of structural equation modeling (SEM) solutions. Its purpose is to augment structural modeling's metatheoretic resources while enhancing awareness of how problematic is the causal significance of SEM-parameter solutions. Part I focuses on the nonuniqueness and consequent dubious interpretability of…
Descriptors: Structural Equation Models, Equations (Mathematics), Matrices, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Vallejo, G.; Fernandez, M. P.; Livacic-Rojas, P. E.; Tuero-Herrero, E. – Multivariate Behavioral Research, 2011
Missing data are a pervasive problem in many psychological applications in the real world. In this article we study the impact of dropout on the operational characteristics of several approaches that can be easily implemented with commercially available software. These approaches include the covariance pattern model based on an unstructured…
Descriptors: Personality Problems, Psychosis, Prevention, Patients
Peer reviewed Peer reviewed
Direct linkDirect link
Chow, Sy-Miin; Hamaker, Ellen L.; Allaire, Jason C. – Multivariate Behavioral Research, 2009
Outliers are typically regarded as data anomalies that should be discarded. However, dynamic or "innovative" outliers can be appropriately utilized to capture unusual but substantively meaningful shifts in a system's dynamics. We extend De Jong and Penzer's 1998 approach for representing outliers in single-subject state-space models to a…
Descriptors: Older Adults, Evaluation, Statistical Analysis, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas – Multivariate Behavioral Research, 2011
The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…
Descriptors: Monte Carlo Methods, Patients, Probability, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Kamakura, Wagner A. – Multivariate Behavioral Research, 2009
Time-use has already been the subject of numerous studies across multiple disciplines such as economics, marketing, sociology, transportation and urban planning. However, most of this research has focused on comparing demographic groups on a few broadly defined activities (e.g., work for pay, leisure, housework, etc.). In this study we take a…
Descriptors: Research Methodology, Time Management, Holistic Approach, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Wanstrom, Linda – Multivariate Behavioral Research, 2009
Second-order latent growth curve models (S. C. Duncan & Duncan, 1996; McArdle, 1988) can be used to study group differences in change in latent constructs. We give exact formulas for the covariance matrix of the parameter estimates and an algebraic expression for the estimation of slope differences. Formulas for calculations of the required sample…
Descriptors: Sample Size, Effect Size, Mathematical Formulas, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Ryu, Ehri; West, Stephen G.; Sousa, Karen H. – Multivariate Behavioral Research, 2009
We extended Wilson and Cleary's (1995) health-related quality of life model to examine the relationships among symptom status (Symptoms), functional health (Disability), and quality of life (QOL). Using a community sample (N = 956) of male HIV positive patients, we tested a mediation model in which the relationship between Symptoms and QOL is…
Descriptors: Quality of Life, Questionnaires, Patients, Symptoms (Individual Disorders)
Peer reviewed Peer reviewed
Direct linkDirect link
Davison, Mark L.; Kim, Se-Kang; Close, Catherine – Multivariate Behavioral Research, 2009
A profile is a vector of scores for one examinee. The mean score in the vector can be interpreted as a measure of overall profile height, the variance can be interpreted as a measure of within person variation, and the ipsatized vector of score deviations about the mean can be said to describe the pattern in the score profile. A within person…
Descriptors: Vocational Interests, Interest Inventories, Profiles, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Schluchter, Mark D. – Multivariate Behavioral Research, 2008
In behavioral research, interest is often in examining the degree to which the effect of an independent variable X on an outcome Y is mediated by an intermediary or mediator variable M. This article illustrates how generalized estimating equations (GEE) modeling can be used to estimate the indirect or mediated effect, defined as the amount by…
Descriptors: Intervals, Predictor Variables, Equations (Mathematics), Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Hwang, Heungsun; Takane, Yoshio; DeSarbo, Wayne S. – Multivariate Behavioral Research, 2007
The growth curve model has been a useful tool for the analysis of repeated measures data. However, it is designed for an aggregate-sample analysis based on the assumption that the entire sample of respondents are from a single homogenous population. Thus, this method may not be suitable when heterogeneous subgroups exist in the population with…
Descriptors: Equations (Mathematics), Antisocial Behavior, Computation, Child Behavior
Peer reviewed Peer reviewed
Botha, J. D.; And Others – Multivariate Behavioral Research, 1988
A method of assessing goodness-of-fit for a single factor model is presented. Indices of fit sensitive to the way that correlation matrices are generated are derived from the factor analysis literature. It is proposed that the cumulative distribution function be evaluated for other values of "p" and "m." (TJH)
Descriptors: Equations (Mathematics), Factor Analysis, Goodness of Fit
Peer reviewed Peer reviewed
Jaccard, James; And Others – Multivariate Behavioral Research, 1990
Issues in the detection and interpretation of interaction effects between quantitative variables in multiple regression analysis are discussed. Recent discussions associated with problems of multicollinearity are reviewed in the context of the conditional nature of multiple regression with product terms. (TJH)
Descriptors: Equations (Mathematics), Mathematical Models, Multiple Regression Analysis
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5